Abstract

Additive manufacturing (AM) for metals is rapidly transitioning to an accepted production technology, which has led to increasing demands for data analysis and software tools. The performance of laser-based powder bed fusion of metals (PBF-LB/M), a common metal AM process, depends on the accuracy of data analysis. Advances in data acquisition and analysis are being propelled by an increase in new types of in situ sensors and ex situ measurement devices. Measurements taken with these sensors and devices rapidly increase the volume, variety, and value of PBF-LB/M data but decrease the veracity of that data simultaneously. The number of new, data-driven software tools capable of analyzing, modeling, simulating, integrating, and managing that data is also increasing; however, the capabilities and accessibility of these tools vary greatly. Issues associated with these software tools are impacting the ability to manage and control PBF-LB/M processes and qualify the resulting parts. This paper investigates and summarizes the available software tools and their capabilities. Findings are then used to help derive a set of functional requirements for tools that are mapped to PBF-LB/M lifecycle activities. The activities include product design, design analysis, process planning, process monitoring, process modeling, process simulation, and production management. PBF-LB/M users can benefit from tools implementing these functional requirements implemented by (1) shortening the lead time of developing these capabilities, (2) adopting emerging, state-of-the-art, PBF-LB/M data and data analytics methods, and (3) enhancing the previously mentioned AM product lifecycle activities.

References

1.
Measurement Science Roadmap for Metal-Based Additive Manufacturing
,” National Institute of Standards and Technology, May 2013.
2.
Moges
,
T.
,
Yang
,
Z.
,
Jones
,
K.
,
Feng
,
S.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2020
, “
Hybrid Modeling Approach for Melt Pool Prediction in Laser Powder Bed Fusion Additive Manufacturing
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
5
), p.
050902
.
3.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
, et al
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.
4.
Di Angelo
,
L.
,
Di Stefano
,
P.
, and
Guardini
,
E.
,
2020
, “
Search for the Optimal Build Direction in Additive Manufacturing Technologies: A Review
,”
J. Manuf. Mater. Process.
,
4
(
71
).
5.
Ye
,
D.
,
Fuh
,
J.
,
Zhang
,
Y.
,
Hong
,
G.
, and
Zhu
,
K.
,
2018
, “
In Situ Monitoring of Selective Laser Melting Using Plume and Spatter Signatures by Deep Networks
,”
ISA Trans.
,
81
, pp.
96
104
.
6.
Ye
,
D.
,
Hong
,
G.
,
Zhang
,
Y.
,
Zhu
,
K.
, and
Fuh
,
J.
,
2018
, “
Defect Detection in Selective Laser Melting Technology by Acoustic Signals With Deep Belief Networks
,”
Int. J. Adv. Manuf. Technol.
,
96
, pp.
1
11
.
7.
Chadwick
,
A. F.
, and
Voorhees
,
P. W.
,
2021
, “
The Development of Grain Structure During Additive Manufacturing
,”
Acta Mater.
,
211
, pp.
116852
.
8.
Baulfeld
,
B.
,
Van der Biest
,
O.
, and
Gault
,
R.
,
2010
, “
Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties
,”
J. Mater. Des.
,
31
, pp.
S106
S111
.
9.
Grasso
,
M.
, and
Colosimo
,
B.
,
2017
, “
Process Defects and In Situ Monitoring Methods in Metal Powder Bed Fusion: A Review
,”
J. Meas. Sci. Technol.
,
28
(
4
).
10.
ISO/ASTM 52911-1:2019
,
2019
, “
Additive Manufacturing—Design—Part 1: Laser-Based Powder Bed Fusion of Metals
,” International Organisation for Standardization.
11.
NASA/NIST/FAA Report on Computational Materials Approaches for Qualification by Analysis for Aerospace Applications
,” NASA/TM-20210015175, May 2021.
12.
Razvi
,
S.
,
Feng
,
S.
,
Lee
,
Y.
,
Witherell
,
P.
, and
Narayanan
,
A.
,
2019
, “
A Review of Machine Learning Applications in Additive Manufacturing
,”
Proceedings of the ASME 2019 IDETC/CIE
,
Aug
., Paper Number 98415.
13.
Standardization Roadmap For Additive Manufacturing, Version 2, America Makes, Youngs Town, PA,
2018
.
14.
Abdelrahman
,
M.
,
Reutzel
,
E.
,
Nassar
,
A.
, and
Starr
,
T.
,
2017
, “
Flaw Detection in Powder Bed Fusion Using Optical Imaging
,”
J. Addit. Manuf.
,
15
, pp.
1
11
.
15.
Bartlett
,
J.
,
Heima
,
F.
,
Murty
,
Y.
, and
Lia
,
X.
,
2018
, “
In Situ Defect Detection in Selective Laser Melting Via Full-Field Infrared Thermography
,”
J. Addit. Manuf.
,
24
, pp.
595
605
.
16.
Cheng
,
B.
,
Lydon
,
J.
,
Cooper
,
K.
,
Cole
,
V.
,
Northrop
,
P.
, and
Chou
,
K.
,
2018
, “
Melt Pool Sensing and Size Analysis in Laser Powder-Bed Metal Additive Manufacturing
,”
J. Manuf. Process.
,
32
, pp.
744
753
.
17.
Mukherjee
,
T.
,
Wei
,
H.
,
De
,
A.
, and
DebRoy
,
T.
,
2018
, “
Heat and Fluid Flow in Additive Manufacturing—Part I: Modeling of Powder Bed Fusion
,”
J. Comput. Mater. Sci.
,
150
, pp.
304
313
.
18.
DebRoy
,
T.
,
Wei
,
H.
,
Zuback
,
J.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components—Process, Structure, Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
19.
National Academies of Sciences, Engineering, and Medicine
,
2019
, Data-Driven Modeling for Additive Manufacturing of Metals: Proceedings of a Workshop, The National Academies Press, Washington, DC.
20.
Witherell
,
P.
,
2018
, “
Emerging Datasets and Analytics for Additive Manufacturing
,”
Proceedings of Fraunhofer Direct Digital Manufacturing Conference DDMC 2018
,
Fraunhofer Verlag, Berlin
,
Mar. 14–15
, pp.
43
48
.
21.
ISO/ASTM 52901:2017 Additive Manufacturing—General Principles—Requirements for Purchased AM Parts
.
22.
ISO/ASTM52910—18 Additive Manufacturing—Design—Requirements, Guidelines and Recommendations
.
23.
Gu
,
H.
,
Gong
,
H.
,
Pal
,
D.
,
Rafi
,
K.
,
Starr
,
T.
, and
Stucker
,
B.
,
2013
, “
Influences of Energy Density on Porosity and Microstructure of Selective Laser Melted 17-4PH Stainless Steel
,”
Proceedings of the Solid Freeform Fabrication Symposium
.
24.
Purtonen
,
T.
,
Kalliosaari
,
A.
, and
Salminen
,
A.
,
2014
, “
Monitoring and Adaptive Control of Laser Processes
,”
Phys. Procedia
,
56
, pp.
1218
1231
.
25.
Lian
,
Y.
,
Gan
,
Z.
,
Yu
,
C.
,
Kats
,
D.
,
Liu
,
W.
, and
Wagner
,
G.
,
2019
, “
A Cellular Automaton Finite Volume Method for Microstructure Evolution During Additive Manufacturing
,”
Mater. Des.
,
169
, p.
107672
.
26.
Li
,
C.
,
Liu
,
Z.
,
Fang
,
X.
, and
Guo
,
Y.
,
2018
, “
Residual Stress in Metal Additive Manufacturing
,”
4th CIRP Conference on Surface Integrity
, Vol. 71, pp.
348
353
.
27.
Feng
,
S.
,
Moges
,
T.
, and
Witherell
,
P.
,
2020
, “
Functional Requirements of Data Analytic Tools and Software for Metal Additive Manufacturing
,”
Proceedings of the ASME 2020 International Mechanical Engineering Congress and Exposition
,
Portland, OR
, IMECE2020-24117.
28.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
.
29.
Petrich
,
J.
,
Gobert
,
C.
,
Phoha
,
S.
,
Nassar
,
A.
, and
Reutzel
,
E.
,
2017
, “
Machine Learning for Defect Detection for PBFAM Using High Resolution Layerwise Imaging Coupled With Post-Build CT Scans
,”
Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium—An Additive Manufacturing Conference
, pp.
1363
1381
.
30.
Reddy
,
S.
,
Maranan
,
K.
,
Simpson
,
T.
,
Palmer
,
T.
, and
Dickman
,
C.
,
2016
, “
Application of Topology Optimization and Design for Additive Manufacturing Guidelines on an Automotive Component
,”
ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, No. 50107, p.
V02AT03A030
.
31.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C. L.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aid. Des.
,
69
, pp.
65
89
.
32.
Yakout
,
M.
,
Cadamuro
,
A.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2017
, “
The Selection of Process Parameters in Additive Manufacturing for Aerospace Alloys
,”
Int. J. Adv. Manuf. Technol.
,
92
(
5–8
), pp.
2081
2098
.
33.
Taheri
,
H.
,
Shoaib
,
M.
,
Koester
,
L.
,
Bigelow
,
T.
,
Collins
,
P.
, and
Bond
,
L.
,
2017
, “
Powder-Based Additive Manufacturing—A Review of Types of Defects, Generation Mechanisms, Detection, Property Evaluation and Metrology
,”
Addit. Subtract. Mater. Manuf.
34.
Zhao
,
C.
,
Fezzaa
,
K.
,
Cunningham
,
R. W.
,
Wen
,
H.
,
De Carlo
,
F.
,
Chen
,
L.
,
Rollett
,
A. D.
, and
Sun
,
T.
,
2017
, “
Real-Time Monitoring of Laser Powder Bed Fusion Process Using High-Speed X-Ray Imaging and Diffraction
,”
Sci. Rep.
,
7
(
1
), pp.
3602
.
35.
Wang
,
D.
,
Wu
,
S.
,
Fu
,
F.
,
Mai
,
S.
,
Yang
,
Y.
,
Liu
,
Y.
, and
Song
,
C.
,
2017
, “
Mechanisms and Characteristics of Spatter Generation in SLM Processing and Its Effect on the Properties
,”
Mater. Des.
,
117
, pp.
121
130
.
36.
Yakout
,
M.
,
Phillips
,
I.
,
Elbestawi
,
M. A.
, and
Fang
,
Q.
,
2021
, “
In-Situ Monitoring and Detection of Spatter Agglomeration and Delamination During Laser-Based Powder Bed Fusion of Invar 36
,”
Opt. Laser Technol.
,
136
, p.
106741
.
37.
Zheng
,
L.
,
2019
, “
Melt Pool Boundary Extraction and Its Width Prediction From Infrared Images in Selective Laser Melting
,”
Mater. Des.
,
183
, p.
108110
.
38.
Mohammadi
,
M. G.
, and
Elbestawi
,
M.
,
2020
, “
Real Time Monitoring in L-PBF Using a Machine Learning Approach
,”
Procedia Manuf.
,
51
, pp.
725
731
.
39.
Yakout
,
M.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2018
, “
A Study of Thermal Expansion Coefficients and Microstructure During Selective Laser Melting of Invar 36 and Stainless Steel 316L
,”
Addit. Manuf.
,
24
, pp.
405
418
.
40.
ISO/IEC/IEEE 31320-1:2012
, “
Information Technology—Modeling Languages—Part 1: Syntax and Semantics for IDEF0
.”
41.
Ko
,
H.
,
Witherell
,
P.
,
Lu
,
Y.
,
Kim
,
S.
, and
Rosen
,
D.
,
2021
, “
Machine Learning and Knowledge Graph Based Design Rule Construction for Additive Manufacturing
,”
J. Addit. Manuf.
,
37
, p.
101620
.
42.
Mani
,
M.
,
Witherell
,
P.
, and
Jee
,
H.
,
2017
, “
Design Rules for Additive Manufacturing: A Categorization
,”
Proceedings of ASME Design Engineering Technical Conference
, Paper Number 68446.
43.
Plocher
,
J.
, and
Panesar
,
A.
,
2019
, “
Review on Design and Structural Optimisation in Additive Manufacturing: Towards Next-Generation Lightweight Structures
,”
Mater. Des.
,
183
, p.
108164
.
44.
Zhang
,
K.
,
Cheng
,
G.
, and
Xu
,
L.
,
2019
, “
Topology Optimization Considering Overhang Constraint in Additive Manufacturing
,”
Comput. Struct.
,
212
, pp.
86
100
.
45.
Kim
,
S.
,
Rosen
,
D. W.
,
Witherell
,
P.
, and
Ko
,
H.
,
2019
, “
A Design for Additive Manufacturing Ontology to Support Manufacturability Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041014
.
46.
Allison
,
J.
,
Sharpe
,
C.
, and
Seepersad
,
C.
,
2019
, “
Powder Bed Fusion Metrology for Additive Manufacturing Design Guidance
,”
Addit. Manuf.
,
25
, pp.
239
251
.
47.
Leary
,
M.
,
Merli
,
L.
,
Torti
,
F.
,
Mazur
,
M.
, and
Brandt
,
M.
,
2014
, “
Optimal Topology for Additive Manufacture: A Method for Enabling Additive Manufacture of Support-Free Optimal Structures
,”
Mater. Des.
,
63
, pp.
678
690
.
48.
Xia
,
Y.
,
Mantzaflaris
,
A.
,
Juttler
,
B.
,
Pan
,
H.
,
Hu
,
P.
, and
Wang
,
W.
,
2019
, “
Design of Self-Supporting Surfaces With Isogeometric Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
353
, pp.
328
347
.
49.
McConaha
,
M.
,
Venugopal
,
V.
, and
Anand
,
S.
,
2021
, “
Design Tool for Topology Optimization of Self Supporting Variable Density Lattice Structures for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p. 071001.
50.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
51.
Liu
,
J.
,
Gaynor
,
A. T.
,
Chen
,
S.
,
Kang
,
Z.
,
Suresh
,
K.
,
Takezawa
,
A.
,
Li
,
L.
, et al
,
2018
, “
Current and Future Trends in Topology Optimization for Additive Manufacturing
,”
Struct. Multidiscipl. Optim.
,
57
(
6
), pp.
2457
2483
.
52.
Zaman
,
U.
,
Rivette
,
M.
,
Siadat
,
A.
, and
Mousavi
,
S.
,
2018
, “
Integrated Product-Process Design: Material and Manufacturing Process Selection for Additive Manufacturing Using Multi-Criteria Decision Making
,”
Robot. Comput. Integr. Manuf.
,
51
, pp.
169
180
.
53.
Pan
,
T.
,
2018
, “
General Rules for Pre-Process Planning in Powder Bed Fusion System—A Review
,”
Proceedings of the 29th Annual International Solid Freeform Fabrication Symposium
,
Austin, TX
,
University of Texas at Austin
,
Aug. 2018
, pp.
1161
1173
.
54.
Yeung
,
H.
,
Lane
,
B.
,
Donmez
,
M.
,
Fox
,
J.
, and
Neira
,
J.
,
2018
, “
Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems
,”
Procedia Manuf.
,
26
, pp.
871
879
.
55.
Marrey
,
M.
,
Malekipour
,
E.
,
El-Mounauri
,
H.
, and
Faierson
,
E.
,
2019
, “
A Framework for Optimizing Process Parameters in Powder Bed Fusion (PBF) Process Using Artificial Neural Network (ANN)
,”
Procedia Manuf.
,
34
, pp.
505
515
.
56.
Jin
,
G.
,
Li
,
W.
, and
Gao
,
L.
,
2013
, “
An Adaptive Process Planning Approach of Rapid Prototyping and Manufacturing
,”
Robot. Comput. Integr. Manuf.
,
29
, pp.
23
38
.
57.
Yeung
,
H.
,
Lane
,
B.
,
Donmez
,
A.
,
Fox
,
J.
, and
Neira
,
J.
,
2018
, “
Implementation of Advanced Laser Control Strategies for Powder Bed Fusion Systems
,”
Procedia Manuf.
58.
Lane
,
B.
, and
Yeung
,
H.
,
2020
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): Overhang Part X4
,”
J. Res. NIST
,
125
, p.
125027
.
59.
Lane
,
B.
, and
Yeung
,
H.
,
2019
, “
Process Monitoring Dataset From the Additive Manufacturing Metrology Testbed (AMMT): “Three-Dimensional Scan Strategies
,”
J. Res. Natl. Inst. Stand. Technol.
,
124
, p.
124033
.
60.
Kim
,
F.
,
Garboczi
,
E.
,
Moylan
,
S.
, and
Slotwinski
,
J.
,
2017
, “
Investigation of Pore Structure and Defects of Metal Additive Manufacturing Components Using X-Ray Computed Tomography
,”
3rd International Conference on Tomography of Materials and Structures
,
Lund, SE
[online].
61.
Cook
,
P.
, and
Murphy
,
A.
,
2020
, “
Simulation of Melt Pool Behaviour During Additive Manufacturing: Underlying Physics and Progress
,”
Addit. Manuf.
,
31
, p.
100909
.
62.
Chen
,
H.
,
Wei
,
Q.
,
Zhang
,
Y.
,
Chen
,
F.
,
Shi
,
Y.
, and
Yan
,
W.
,
2019
, “
Powder-Spreading Mechanisms in Powder-Bed-Based Additive Manufacturing: Experiments and Computational Modeling
,”
Acta Mater.
,
179
, pp.
158
171
.
63.
Xiang
,
Z.
,
Yin
,
M.
,
Deng
,
Z.
,
Mei
,
X.
, and
Yin
,
G.
,
2016
, “
Simulation of Forming Process of Powder Bed for Additive Manufacturing
,”
ASME J. Manuf. Sci. Eng.
,
138
(
8
), p.
081002
.
64.
Jia
,
T.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2011
, “
Dynamic Simulation of Particle Packing With Different Size Distributions
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021011
.
65.
Mohebbi
,
M.
, and
Polshikhin
,
V.
,
2020
, “
Implementation of Nucleation in Cellular Automaton Simulation of Microstructural Evolution During Additive Manufacturing of Al Alloys
,”
J. Addit. Manuf.
,
36
, p.
101726
.
66.
Yang
,
Y.
,
Gu
,
D.
,
Dai
,
D.
, and
Ma
,
C.
,
2018
, “
Laser Energy Absorption Behavior of Powder Particles Using Ray Tracing Method During Selective Laser Melting Additive Manufacturing of Aluminum Alloy
,”
Mater. Des.
,
143
, pp.
12
19
.
67.
Lane
,
B.
,
Zhirnov
,
I.
,
Mekhontsev
,
S.
,
Grantham
,
S.
,
Ricker
,
R.
,
Rauniyar
,
S.
, and
Chou
,
K.
,
2020
, “
Transient Laser Energy Absorption, Co-Axial Melt Pool Monitoring, and Relationship to Melt Pool Morphology
,”
Addit. Manuf.
,
36
, p.
101504
.
68.
Reijonen
,
J.
,
Revuelta
,
A.
,
Riipinen
,
T.
,
Ruusuvuori
,
K.
, and
Puukko
,
P.
,
2020
, “
On the Effect of Shielding Gas Flow on Porosity and Melt Pool Geometry in Laser Powder Bed Fusion Additive Manufacturing
,”
J. Addit. Manuf.
,
32
, p.
101030
.
69.
Zhu
,
Q.
,
Liu
,
Z.
, and
Yan
,
J.
,
2021
, “
Machine Learning for Metal Additive Manufacturing: Predicting Temperature and Melt Pool Fluid Dynamics Using Physics-Informed Neural Networks
,”
Comput. Mech.
,
67
(
2
), pp.
619
635
.
70.
Yang
,
Z.
,
Lu
,
Y.
,
Yeung
,
H.
, and
Kirshnamurty
,
S.
,
2020
, “
3D Build Melt Pool Predictive Modeling for Powder Bed Fusion Additive Manufacturing
,”
Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 9: 40th Computers and Information in Engineering Conference (CIE)
,
ASME
,
Aug. 17–19
. p.
V009T09A046
.
71.
Patel
,
S.
, and
Vlasea
,
M.
,
2020
, “
Melting Modes in Laser Powder Bed Fusion
,”
Materialia
,
9
, p.
100591
.
72.
Panwisawas
,
C.
,
Qiu
,
C.
,
Anderson
,
M.
,
Sovani
,
Y.
,
Turner
,
R. P.
,
Attallah
,
M. M.
,
Brooks
,
J. W.
, and
Basoalto
,
H. C.
,
2017
, “
Mesoscale Modelling of Selective Laser Melting: Thermal Fluid Dynamics and Microstructural Evolution
,”
J. Comput. Mater. Sci.
,
126
, pp.
479
490
.
73.
Lu
,
L.
,
Sridhar
,
N.
, and
Zhang
,
Y.
,
2018
, “
Phase Field Simulation of Powder Bed-Based Additive Manufacturing
,”
Acta Mater.
,
144
, pp.
801
809
.
74.
Akram
,
J.
,
Chalavadi
,
P.
,
Pal
,
D.
, and
Stucker
,
B.
,
2018
, “
Understanding Grain Evolution in Additive Manufacturing Through Modeling
,”
J. Addit. Manuf.
,
21
, pp.
255
268
.
75.
Rai
,
A.
,
Helmer
,
H.
, and
Korner
,
C.
,
2017
, “
Simulation of Grain Structure Evolution During Powder Bed Based Additive Manufacturing
,”
J. Addit. Manuf.
,
13
, pp.
124
134
.
76.
Guraya
,
T.
,
Singamneni
,
S.
, and
Chen
,
Z.
,
2019
, “
Microstructure Formed During Selective Laser Melting of IN738LC in Keyhole Mode
,”
J. Alloys Compd.
,
792
, pp.
151
160
.
77.
Parry
,
L.
,
Ashcroft
,
I.
, and
Wildman
,
R.
,
2016
, “
Understanding the Effect of Laser Scan Strategy on Residual Stress in Selective Laser Melting Through Thermo-Mechanical Simulation
,”
J. Addit. Manuf.
,
12
, pp.
1
15
.
78.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H.
,
Brooks
,
J.
, and
Attallah
,
M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
79.
Brown
,
C.
, and
Donmez
,
A.
,
2016
, “
Microstructure Analysis for Additive Manufacturing: A Review of Existing Standards
,” Advanced Manufacturing Series (NIST AMS)—100-3. 10.6028/NIST.AMS.100-3
80.
Feng
,
S.
,
Lu
,
Y.
, and
Jones
,
A.
,
2020
, “
Measured Data Alignments for Monitoring Metal Additive Manufacturing Processes Using Laser Powder Bed Fusion Methods
,”
Proceedings of ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2020)
, Paper Number IDETC2020-22478.
81.
Feng
,
S.
,
Lu
,
Y.
, and
Jones
,
A.
,
2020
, “
Meta-Data for In-Situ Monitoring of Laser Powder Bed Fusion Processes
,”
Proceedings of ASME 2020 Manufacturing Science and Engineering Conference
, Paper No. MSEC2020-8344.
You do not currently have access to this content.