Abstract

Resistance spot welding (RSW) is applied extensively by automotive manufacturers for assembling the structural and body components of vehicles. The current method of welding quality inspection is off-line inspection after welding, which cannot provide real-time feedback on welding quality and cannot meet the rhythm of modern production. Therefore, the online non-destructive testing technology of welding quality is worth studying. In this study, an RSW quality prediction model is developed using the improved grasshopper optimization algorithm combined with the generalized regression neural network (GRNN) algorithm, in which the actual process parameters including welding current, welding voltage, energy, power, and pulse width are used as inputs to predict the nugget diameter. During the network training process, the optimization algorithm is used for finding the optimum smoothing factor σ of GRNN, chaotic mapping, and non-uniform mutation are added to the traditional grasshopper optimization algorithm to enhance the optimization ability of the algorithm. Through bootstrap sampling, a comparison experiment about the prediction effect of the proposed quality prediction model with earlier methods is carried out, and the analysis of the experimental results leads to a conclusion that the accuracy of the proposed welding quality prediction model is higher.

References

1.
Andrews
,
D.
, and
Broomhead
,
J.
,
1975
, “
Quality Assurance for Resistance Spot Welding
,”
Weld. J.
,
54
(
6
), pp.
431
435
.
2.
Xiaoli
,
H.
,
Fucheng
,
X.
, and
Ling
,
X.
,
2018
, “
Development and Trend of Ultrasonic Testing in Automobile Spot Welding
,”
Electr. Weld.
,
537
(
03
), pp.
40
46
.
3.
Feng
,
L.
, and
Yina
,
C.
,
2015
, “
Process Control of Automobile Resistance Spot Welding Quality
,”
Enterp. Sci. Technol. Dev.
,
000
(
001
), pp.
44
49
.
4.
Zhou
,
M.
,
Hu
,
S. J.
, and
Zhang
,
H.
,
1999
, “
Critical Specimen Sizes for Tensile-Shear Testing of Steel Sheets
,”
Weld. J.
,
78
(
9
), pp.
305s
313s
.
5.
Jing
,
W.
,
2010
,
Intelligent and Systematic Research of Resistance Spot Welding Quality Monitoring
,
Jilin University
,
Jilin
, pp.
9
10
.
6.
Hamidinejad
,
S. M.
,
Kolahan
,
F.
, and
Kokabi
,
A. H.
,
2012
, “
The Modeling and Process Analysis of Resistance Spot Welding on Galvanized Steel Sheets Used in Car Body Manufacturing
,”
Mater. Des.
,
34
, pp.
759
767
.
7.
Insung
,
H.
,
Hyeonsang
,
Y.
, and
Jinyoung
,
Y.
,
2018
, “
Prediction of Resistance Spot Weld Quality of 780 MPa Grade Steel Using Adaptive Resonance Theory Artificial Neural Networks
,”
Metals
,
8
(
6
), p.
453
.
8.
Ahmed
,
F.
, and
Kim
,
K. Y.
,
2017
, “
Data-Driven Weld Nugget Width Prediction With Decision Tree Algorithm
,”
Procedia Manuf.
,
10
, pp.
1009
1019
.
9.
Ouafi
,
A. E.
,
Bélanger
,
R.
, and
Méthot
,
J.
,
2011
, “
Artificial Neural Network-Based Resistance Spot Welding Quality Assessment System
,”
Metall. Res. Technol.
,
108
(
6
), pp.
343
355
.
10.
Martin
,
O.
,
Pereda
,
M.
, and
Ignacio Santos
,
J.
,
2014
, “
Assessment of Resistance Spot Welding Quality Based on Ultrasonic Testing and Tree-Based Techniques
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2478
2487
.
11.
Tran
,
H. T.
,
Kim
,
K. Y.
, and
Yang
,
H. J.
,
2014
, “
Weldability Prediction of AHSS Stackups Using Support Vector Machines
,”
Int. J. Electr. Comput. Eng.
,
6
(
3
), pp.
207
210
.
12.
Martin
,
O.
,
Ahedo
,
V.
,
Santos
,
J. I.
,
De Tiedra
,
P.
, and
Galan
,
J. M.
,
2016
, “
Quality Assessment of Resistance Spot Welding Joints of AISI 304 Stainless Steel Based on Elastic Nets
,”
Mater. Sci. Eng. A
,
676
, pp.
173
181
.
13.
Kim
,
K. Y.
, and
Hmed
,
F. A.
,
2018
, “
Semantic Weldability Prediction With RSW Quality Dataset and Knowledge Construction
,”
Adv. Eng. Inform.
,
38
, pp.
41
53
.
14.
Gavidel
,
S. Z.
,
Lu
,
S.
, and
Rickli
,
J. L.
,
2019
, “
Performance Analysis and Comparison of Machine Learning Algorithms for Predicting Nugget Width of Resistance Spot Welding Joints
,”
Int. J. Adv. Manuf. Technol.
,
105
(
9
), pp.
3779
3796
.
15.
Wen
,
J.
,
Jia
,
H. D.
, and
Wang
,
C. S.
,
2019
, “
Quality Estimation System for Resistance Spot Welding of Stainless Steel
,”
ISIJ Int.
,
59
(
11
), pp.
2073
2076
.
16.
Specht
,
D. F.
,
1991
, “
A General Regression Neural Network
,”
IEEE Trans. Neural Netw.
,
2
(
6
), pp.
568
576
.
17.
Saremi
,
S.
,
Mirjalili
,
S.
, and
Lewis
,
A.
,
2017
, “
Grasshopper Optimisation Algorithm: Theory and Application
,”
Adv. Eng. Softw.
,
105
, pp.
30
47
.
18.
Topaz
,
C. M.
,
Bernoff
,
A. J.
,
Logan
,
S.
, and
Toolson
,
W.
,
2008
, “
A Model for Rolling Swarms of Locusts
,”
Eur. Phys. J.: Spec. Top.
,
157
(
1
), pp.
93
109
.
19.
Zemin
,
F.
, and
Jiahua
,
M.
,
2011
, “
Springback Prediction of High-Strength Sheet Metal Under Air Bending Forming and Tool Design Based on GA-BPNN
,”
Int. J. Adv. Manuf. Technol.
,
53
(
5–8
), pp.
473
483
.
20.
Lan
,
X.
, and
Yuting
,
Z.
,
2019
, “
Quality Prediction Model Based on Novel Elman Neural Network Ensemble
,”
Complexity
,
2019
, pp.
1
11
.
21.
Hongze
,
L.
,
Sen
,
G.
,
Chunjie
,
L.
, and
Jingqi
,
S.
,
2013
, “
A Hybrid Annual Power Load Forecasting Model Based on Generalized Regression Neural Network With Fruit Fly Optimization Algorithm
,”
Knowl.-Based Syst.
,
37
, pp.
378
387
.
22.
Guolong
,
L.
,
Hao
,
K.
,
Chuanzhen
,
L.
, and
Biao
,
L.
,
2020
, “
Thermal Error Modeling of Feed Axis in Machine Tool Using Particle Swarm Optimization-Based Generalized Regression Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021003
.
23.
Kohli
,
M.
, and
Arora
,
S.
,
2018
, “
Chaotic Grey Wolf Optimization Algorithm for Constrained Optimization Problems
,”
J. Comput. Des. Eng.
,
5
(
4
), pp.
458
472
.
24.
Zhigang
,
C.
,
Diqing
,
L.
,
Xiaohong
,
D.
, and
Ying
,
Z.
,
2016
, “
Performance Analysis and Improvement of Logistic Chaotic Mapping
,”
J. Electron. Inf. Technol.
,
38
(
6
), pp.
1547
1551
.
25.
Michalewicz
,
Z.
,
1992
,
Genetic Algorithms + Data Structures = Evolution Programs
,
Springer-Verlag
,
Berlin
, pp.
103
104
.
26.
Rodgers
,
L.
, and
Nicewander
,
W. A.
,
1988
, “
Thirteen Ways to Look at the Correlation Coefficient
,”
Am. Stat.
,
42
(
1
), pp.
59
66
.
27.
Shurmer
,
H. V.
,
Gardner
,
J. W.
, and
Corcoran
,
P.
,
1990
, “
Intelligent Vapour Discrimination Using a Composite 12-Element Sensor Array
,”
Sens. Actuators, B
,
1
(
1–6
), pp.
256
260
.
28.
Johnson
,
R. W.
,
1998
, “
An Introduction to the Bootstrap
,”
Teach. Stat.
,
23
(
2
), pp.
49
54
.
29.
Xiaohui
,
C.
,
2018
, “
Gaussian and Bootstrap Approximations for High-Dimensional U-Statistics and Their Applications
,”
Ann. Stat.
,
46
(
2
), pp.
642
678
.
30.
Efron
,
B.
,
1979
, “
Bootstrap Methods: Another Look at the Jackknife
,”
Ann. Stat.
,
7
(
1
), pp.
1
26
.
31.
Suat
,
S.
, and
Dervis
,
T.
,
2007
, “
Bootstrap and Jackknife Resampling Algorithms for Estimation of Regression Parameters
,”
J. Appl. Quant. Methods
,
2
(
2
), pp.
188
199
.
32.
Kitagawa
,
G.
, and
Konishi
,
S.
,
2010
, “
Bias and Variance Reduction Techniques for Bootstrap Information Criteria
,”
Ann. Inst. Stat. Math.
,
62
(
1
), pp.
209
234
.
33.
Ostle
,
B
,
1963
,
Statistics in Research
,
lowa State University Press
,
lowa
, p.
471
.
34.
Wendai
,
L.
,
1997
,
SPSS for Windows From Beginner to Master
,
Electronic Industry Press
,
Beijing
, pp.
116
117
.
35.
Kim
,
H. J.
,
Fay
,
M.P.
, and
Feuer
,
E.J.
,
2000
, “
Permutation Tests for Joinpoint Regression with Applications to Cancer Rates
,”
Stat. Med.
,
19
(
3
), pp.
335
351
.
You do not currently have access to this content.