Abstract

With the development of deep learning and information technologies, intelligent welding systems have been further developed, which achieve satisfactory identification of defective welds. However, the lack of labeled samples and complex working conditions can hinder the improvement of identification models. This paper explores a novel method based on metric-based meta-learning for the classification of welding defects with cross-domain few-shot (CDFS) problems. First, an embedding module using convolutional neural network (CNN) is applied to perform feature extraction and generate prototypes. The embedding module only contains one input layer, multiple convolutions, max-pooling operators, and batch normalization layers, which has the advantages of low computational cost and high generalization of images. Then the prototypical module using a prototypical network (PN) is proposed to reduce the influence of domain-shift caused by different materials or measurements using the representations in embedding space, which can improve the performance of few-shot welding defects identification. The proposed approach is verified on real welding defects under different welding conditions from the Camera-Welds dataset. For the K-shot classification on different tasks, the proposed method achieves the highest average testing accuracy compared to the existing methods. The results show the proposed method outperforms the model-based meta-learning (MAML) and transfer-learning method.

References

1.
Fan
,
X.
,
Gao
,
X.
,
Liu
,
G.
,
Ma
,
N.
, and
Zhang
,
Y.
,
2021
, “
Research and Prospect of Welding Monitoring Technology Based on Machine Vision
,”
Int. J. Adv. Manuf. Technol.
,
115
(
11
), pp.
3365
3391
.
2.
Cai
,
W.
,
Wang
,
J.
,
Jiang
,
P.
,
Cao
,
L.
,
Mi
,
G.
, and
Zhou
,
Q.
,
2020
, “
Application of Sensing Techniques and Artificial Intelligence-Based Methods to Laser Welding Real-Time Monitoring: A Critical Review of Recent Literature
,”
J. Manuf. Syst.
,
57
, pp.
1
18
.
3.
Madhvacharyula
,
A. S.
,
Pavan
,
A. V. S.
,
Gorthi
,
S.
,
Chitral
,
S.
,
Venkaiah
,
N.
, and
Kiran
,
D. V.
,
2022
, “
In Situ Detection of Welding Defects: A Review
,”
Weld World
,
66
(
4
), pp.
611
628
.
4.
Wang
,
B.
,
Hu
,
S. J.
,
Sun
,
L.
, and
Freiheit
,
T.
,
2020
, “
Intelligent Welding System Technologies: State-of-the-Art Review and Perspectives
,”
J. Manuf. Syst.
,
56
, pp.
373
391
.
5.
Yiping
,
G.
,
Xinyu
,
L.
, and
Gao
,
L.
,
2021
, “
A Deep Lifelong Learning Method for Digital Twin-Driven Defect Recognition With Novel Classes
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
3
), p.
031004
.
6.
Shevchik
,
S.
,
Le-Quang
,
T.
,
Meylan
,
B.
,
Farahani
,
F. V.
,
Olbinado
,
M. P.
,
Rack
,
A.
,
Masinelli
,
G.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
,
2020
, “
Supervised Deep Learning for Real-Time Quality Monitoring of Laser Welding With X-Ray Radiographic Guidance
,”
Sci. Rep.
,
10
(
1
), p.
3389
.
7.
Bhatt
,
P. M.
,
Malhan
,
R. K.
,
Rajendran
,
P.
,
Shah
,
B. C.
,
Thakar
,
S.
,
Yoon
,
Y. J.
, and
Gupta
,
S. K.
,
2021
, “
Image-Based Surface Defect Detection Using Deep Learning: A Review
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
040801
.
8.
Yang
,
L.
, and
Jiang
,
H.
,
2021
, “
Weld Defect Classification in Radiographic Images Using Unified Deep Neural Network With Multi-level Features
,”
J. Intell. Manuf.
,
32
(
2
), pp.
459
469
.
9.
Zhang
,
Y.
,
Gao
,
X.
,
You
,
D.
, and
Zhang
,
N.
,
2019
, “
Data-Driven Detection of Laser Welding Defects Based on Real-Time Spectrometer Signals
,”
IEEE Sens. J.
,
19
(
20
), pp.
9364
9373
.
10.
Hou
,
W.
,
Wei
,
Y.
,
Jin
,
Y.
, and
Zhu
,
C.
,
2019
, “
Deep Features Based on a DCNN Model for Classifying Imbalanced Weld Flaw Types
,”
Measurement
,
131
, pp.
482
489
.
11.
Mery
,
D.
,
Riffo
,
V.
,
Zscherpel
,
U.
,
Mondragón
,
G.
,
Lillo
,
I.
,
Zuccar
,
I.
,
Lobel
,
H.
, and
Carrasco
,
M.
,
2015
, “
GDXray: The Database of X-ray Images for Nondestructive Testing
,”
J. Nondest. Eval.
,
34
(
4
), pp.
1
12
.
12.
Xie
,
T.
,
Huang
,
X.
, and
Choi
,
S.-K.
,
2021
, “
Intelligent Mechanical Fault Diagnosis Using Multi-Sensor Fusion and Convolution Neural Network
,”
IEEE Trans. Ind. Inform.
,
18
(
5
), pp.
3213
3223
.
13.
Deng
,
F.
,
Huang
,
Y.
,
Lu
,
S.
,
Chen
,
Y.
,
Chen
,
J.
,
Feng
,
H.
,
Zhang
,
J.
, et al
,
2020
, “
A Multi-sensor Data Fusion System for Laser Welding Process Monitoring
,”
IEEE Access
,
8
, pp.
147349
147357
.
14.
Zhang
,
T.
,
Chen
,
J.
,
Li
,
F.
,
Zhang
,
K.
,
Lv
,
H.
,
He
,
S.
, and
Xu
,
E.
,
2022
, “
Intelligent Fault Diagnosis of Machines With Small & Imbalanced Data: A State-of-the-Art Review and Possible Extensions
,”
ISA Trans.
,
119
, pp.
152
171
.
15.
Huang
,
X.
,
Xie
,
T.
,
Wang
,
Z.
,
Chen
,
L.
,
Zhou
,
Q.
, and
Hu
,
Z.
,
2022
, “
A Transfer Learning-Based Multi-fidelity Point-Cloud Neural Network Approach for Melt Pool Modeling in Additive Manufacturing
,”
ASCE-ASME J. Risk Uncert. Eng. Syst. Part B: Mech. Eng.
,
8
(
1
), p.
011104
.
16.
Huang
,
X.
,
Lei
,
Q.
,
Xie
,
T.
,
Zhang
,
Y.
,
Hu
,
Z.
, and
Zhou
,
Q.
,
2020
, “
Deep Transfer Convolutional Neural Network and Extreme Learning Machine for Lung Nodule Diagnosis on CT Images
,”
Knowledge-Based Syst.
,
204
, p.
106230
.
17.
Dai
,
W.
,
Li
,
D.
,
Tang
,
D.
,
Wang
,
H.
, and
Peng
,
Y.
,
2022
, “
Deep Learning Approach for Defective Spot Welds Classification Using Small and Class-Imbalanced Datasets
,”
Neurocomputing
,
477
, pp.
46
60
.
18.
Guo
,
R.
,
Liu
,
H.
,
Xie
,
G.
, and
Zhang
,
Y.
,
2021
, “
Weld Defect Detection From Imbalanced Radiographic Images Based on Contrast Enhancement Conditional Generative Adversarial Network and Transfer Learning
,”
IEEE Sens. J.
,
21
(
9
), pp.
10844
10853
.
19.
Munger
,
T.
, and
Desa
,
S.
,
2021
, “
A Statistical Design of Experiments Approach to Machine Learning Model Selection in Engineering Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
011008
.
20.
Huisman
,
M.
,
van Rijn
,
J. N.
, and
Plaat
,
A.
,
2021
, “
A Survey of Deep Meta-Learning
,”
Artif. Intell. Rev.
,
54
(
6
), pp.
4483
4541
.
21.
Feng
,
Y.
,
Chen
,
J.
,
Xie
,
J.
,
Zhang
,
T.
,
Lv
,
H.
, and
Pan
,
T.
,
2022
, “
Meta-Learning as a Promising Approach for Few-Shot Cross-Domain Fault Diagnosis: Algorithms, Applications, and Prospects
,”
Knowledge-Based Syst.
,
235
, p.
107646
.
22.
Singh
,
R.
,
Bharti
,
V.
,
Purohit
,
V.
,
Kumar
,
A.
,
Singh
,
A. K.
, and
Singh
,
S. K.
,
2021
, “
MetaMed: Few-Shot Medical Image Classification Using Gradient-Based Meta-Learning
,”
Pattern Recogn.
,
120
, p.
108111
.
23.
Li
,
X.
,
Sun
,
Z.
,
Xue
,
J.-H.
, and
Ma
,
Z.
,
2021
, “
A Concise Review of Recent Few-Shot Meta-Learning Methods
,”
Neurocomputing
,
456
, pp.
463
468
.
24.
Zhang
,
S.
,
Ye
,
F.
,
Wang
,
B.
, and
Habetler
,
T. G.
,
2021
, “
Few-Shot Bearing Fault Diagnosis Based on Model-Agnostic Meta-Learning
,”
IEEE Trans. Ind. Appl.
,
57
(
5
), pp.
4754
4764
.
25.
Li
,
C.
,
Li
,
S.
,
Zhang
,
A.
,
He
,
Q.
,
Liao
,
Z.
, and
Hu
,
J.
,
2021
, “
Meta-Learning for Few-Shot Bearing Fault Diagnosis Under Complex Working Conditions
,”
Neurocomputing
,
439
, pp.
197
211
.
26.
Su
,
H.
,
Xiang
,
L.
,
Hu
,
A.
,
Xu
,
Y.
, and
Yang
,
X.
,
2022
, “
A Novel Method Based on Meta-Learning for Bearing Fault Diagnosis With Small Sample Learning Under Different Working Conditions
,”
Mech. Syst. Signal Process.
,
169
, p.
108765
.
27.
Wang
,
Y.
,
Chen
,
L.
,
Liu
,
Y.
, and
Gao
,
L.
,
2021
, “
Wavelet-Prototypical Network Based on Fusion of Time and Frequency Domain for Fault Diagnosis
,”
Sensors
,
21
(
4
), p.
1483
.
28.
Jiang
,
C.
,
Chen
,
H.
,
Xu
,
Q.
, and
Wang
,
X.
,
2022
, “
Few-Shot Fault Diagnosis of Rotating Machinery With Two-Branch Prototypical Networks
,”
J. Intell. Manuf.
, pp.
1
15
.
29.
Xie
,
T.
,
Huang
,
X.
, and
Choi
,
S.-K.
,
2022
, “
Information Fusion-Based Meta-Learning for Few-Shot Fault Diagnosis Under Different Working Conditions
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
30.
Ji
,
Z.
,
Chai
,
X.
,
Yu
,
Y.
,
Pang
,
Y.
, and
Zhang
,
Z.
,
2020
, “
Improved Prototypical Networks for Few-Shot Learning
,”
Pattern Recogn. Lett.
,
140
, pp.
81
87
.
31.
Song
,
H.
,
Deng
,
B.
,
Pound
,
M.
,
Özcan
,
E.
, and
Triguero
,
I.
,
2022
, “
A Fusion Spatial Attention Approach for Few-Shot Learning
,”
Inf. Fus.
,
81
, pp.
187
202
.
You do not currently have access to this content.