Abstract

Cerebrovascular accidents like a stroke can affect the lower limb as well as upper extremity joints (i.e., shoulder, elbow, or wrist) and hinder the ability to produce necessary torque for activities of daily living. In such cases, muscles’ ability to generate forces reduces, thus affecting the joint’s torque production. Understanding how muscles generate forces is a key element to injury detection. Researchers have developed several computational methods to obtain muscle forces and joint torques. Electromyography (EMG) driven modeling is one of the approaches to estimate muscle forces and obtain joint torques from muscle activity measurements. Musculoskeletal models and EMG-driven models require necessary muscle-specific parameters for the calculation. The focus of this study is to investigate the EMG-driven approach along with an upper extremity musculoskeletal model to determine muscle forces of two major muscle groups, biceps brachii and triceps brachii, consisting of seven muscle-tendon units. Estimated muscle forces are used to determine the elbow joint torque. Experimental EMG signals and motion capture data are collected for a healthy subject. The musculoskeletal model is scaled to match the geometric parameters of the subject. Then, the approach calculates muscle forces and joint moment for two tasks: simple elbow flexion extension and triceps kickback. Individual muscle forces and net joint torques for both tasks are estimated. The study also has compared the effect of muscle-tendon parameters (optimal fiber length and tendon slack length) on the estimated results.

References

1.
Lanzoni
,
D.
,
Vitali
,
A.
,
Regazzoni
,
D.
, and
Rizzi
,
C.
,
2022
, “
Design of Customized Virtual Reality Serious Games for the Cognitive Rehabilitation of Retrograde Amnesia After Brain Stroke
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
3
), p.
031009
.
2.
Srimathveeravalli
,
G.
,
Gourishankar
,
V.
,
Kumar
,
A.
, and
Kesavadas
,
T.
,
2009
, “
Experimental Evaluation of Shared Control for Rehabilitation of Fine Motor Skills
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
1
), p.
014503
.
3.
Vitali
,
A.
,
Maffioletti
,
F.
,
Regazzoni
,
D.
, and
Rizzi
,
C.
,
2020
, “
Quantitative Assessment of Shoulder Rehabilitation Using Digital Motion Acquisition and Convolutional Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
5
), p.
054502
.
4.
Bisseling
,
R. W.
, and
Hof
,
A. L.
,
2006
, “
Handling of Impact Forces in Inverse Dynamics
,”
J. Biomech.
,
39
(
13
), pp.
2438
2444
.
5.
Shourijeh
,
M. S.
,
Mehrabi
,
N.
, and
McPhee
,
J.
,
2017
, “
Forward Static Optimization in Dynamic Simulation of Human Musculoskeletal Systems: A Proof-of-Concept Study
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
5
), p.
051005
.
6.
Farina
,
D.
, and
Negro
,
F.
,
2012
, “
Accessing the Neural Drive to Muscle and Translation to Neurorehabilitation Technologies
,”
IEEE Rev. Biomed. Eng.
,
5
, pp.
3
14
.
7.
Doorenbosch
,
C. A.
, and
Harlaar
,
J.
,
2003
, “
A Clinically Applicable EMG–Force Model to Quantify Active Stabilization of the Knee After a Lesion of the Anterior Cruciate Ligament
,”
Clin. Biomech.
,
18
(
2
), pp.
142
149
.
8.
Kellis
,
E.
, and
Baltzopoulos
,
V.
,
1997
, “
The Effects of Antagonist Moment on the Resultant Knee Joint Moment During Isokinetic Testing of the Knee Extensors
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
76
(
3
), pp.
253
259
.
9.
Amarantini
,
D.
, and
Martin
,
L.
,
2004
, “
A Method to Combine Numerical Optimization and EMG Data for the Estimation of Joint Moments Under Dynamic Conditions
,”
J. Biomech.
,
37
(
9
), pp.
1393
1404
.
10.
Liu
,
M. M.
,
Herzog
,
W.
, and
Savelberg
,
H. H.
,
1999
, “
Dynamic Muscle Force Predictions From EMG: An Artificial Neural Network Approach
,”
J. Electromyogr. Kinesiol.
,
9
(
6
), pp.
391
400
.
11.
Olney
,
S. J.
, and
Winter
,
D. A.
,
1985
, “
Predictions of Knee and Ankle Moments of Force in Walking From EMG and Kinematic Data
,”
J. Biomech.
,
18
(
1
), pp.
9
20
.
12.
Lloyd
,
D. G.
, and
Besier
,
T. F.
,
2003
, “
An EMG-Driven Musculoskeletal Model to Estimate Muscle Forces and Knee Joint Moments In Vivo
,”
J. Biomech.
,
36
(
6
), pp.
765
776
.
13.
Bogey
,
R. A.
,
Perry
,
J.
, and
Gitter
,
A. J.
,
2005
, “
An EMG-to-Force Processing Approach for Determining Ankle Muscle Forces During Normal Human Gait
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
13
(
3
), pp.
302
310
.
14.
Sartori
,
M.
,
Reggiani
,
M.
,
Farina
,
D.
, and
Lloyd
,
D. G.
,
2012
, “
EMG-Driven Forward-Dynamic Estimation of Muscle Force and Joint Moment About Multiple Degrees of Freedom in the Human Lower Extremity
,”
PLoS One
,
7
(
12
), pp.
e52618
.
15.
Kumar
,
D.
,
Rudolph
,
K. S.
, and
Manal
,
K. T.
,
2012
, “
EMG-Driven Modeling Approach to Muscle Force and Joint Load Estimations: Case Study in Knee Osteoarthritis
,”
J. Orthop. Res.
,
30
(
3
), pp.
377
383
.
16.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K.
, and
Besier
,
T. F.
,
2005
, “
Estimation of Muscle Forces and Joint Moments Using a Forward-Inverse Dynamics Model
,”
Med. Sci. Sports Exercise
,
37
(
11
), pp.
1911
1916
.
17.
Winby
,
C. R.
,
Lloyd
,
D. G.
,
Besier
,
T. F.
, and
Kirk
,
T. B.
,
2009
, “
Muscle and External Load Contribution to Knee Joint Contact Loads During Normal Gait
,”
J. Biomech.
,
42
(
14
), pp.
2294
2300
.
18.
Gardinier
,
E. S.
,
Manal
,
K.
,
Buchanan
,
T. S.
, and
Snyder-Mackler
,
L.
,
2013
, “
Minimum Detectable Change for Knee Joint Contact Force Estimates Using an EMG-Driven Model
,”
Gait Posture
,
38
(
4
), pp.
1051
1053
.
19.
Gerus
,
P.
,
Rao
,
G.
,
Buchanan
,
T. S.
, and
Berton
,
E.
,
2010
, “
A Clinically Applicable Model to Estimate the Opposing Muscle Groups Contributions to Isometric and Dynamic Tasks
,”
Ann. Biomed. Eng.
,
38
(
7
), pp.
2406
2417
.
20.
Meyer
,
A. J.
,
Patten
,
C.
, and
Fregly
,
B. J.
,
2017
, “
Lower Extremity EMG-Driven Modeling of Walking With Automated Adjustment of Musculoskeletal Geometry
,”
PLoS One
,
12
(
7
), p.
e0179698
.
21.
Langenderfer
,
J.
,
LaScalza
,
S.
,
Mell
,
A.
,
Carpenter
,
J. E.
,
Kuhn
,
J. E.
, and
Hughes
,
R. E.
,
2005
, “
An EMG-Driven Model of the Upper Extremity and Estimation of Long Head Biceps Force
,”
Comput. Biol. Med.
,
35
(
1
), pp.
25
39
.
22.
Delp
,
S. L.
,
Anderson
,
F. C.
,
Arnold
,
A. S.
,
Loan
,
P.
,
Habib
,
A.
,
John
,
C. T.
, and
Thelen
,
D. G.
,
2007
, “
OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement
,”
IEEE Trans. Biomed. Eng.
,
54
(
11
), pp.
1940
1950
.
23.
Thelen
,
D. G.
,
2003
, “
Adjustment of Muscle Mechanics Model Parameters to Simulate Dynamic Contractions in Older Adults
,”
ASME J. Biomech. Eng.
,
125
(
1
), pp.
70
77
.
24.
Stiver
,
M.
,
Bradshaw
,
L.
,
Breinhorst
,
E.
,
Anne
,
A.
, and
Mirjalili
,
S. A.
,
2021
, “
Three-Dimensional Muscle Architecture of the Infant and Adult Trapezius: A Cadaveric Pilot Study
,”
Anatomy
,
15
(
1
), pp.
26
35
.
25.
Modenese
,
L.
,
Ceseracciu
,
E.
,
Reggiani
,
M.
, and
Lloyd
,
D. G.
,
2016
, “
Estimation of Musculotendon Parameters for Scaled and Subject Specific Musculoskeletal Models Using an Optimization Technique
,”
J. Biomech.
,
49
(
2
), pp.
141
148
.
26.
Tahmid
,
S.
,
Yang
,
J.
, and
Font-Llagunes
,
J. M.
,
2019
, “
Review of Models and Robotic Devices for Stroke Survivors’ Upper Extremity Rehabilitation
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Hilton Anaheim, Anaheim, CA
,
Aug. 18–21
.
27.
Kakizaki
,
T.
,
Endo
,
M.
,
Urii
,
J.
, and
Endo
,
M.
,
2017
, “
Application of Digital Human Models to Physiotherapy Training
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031014
.
28.
Tahmid
,
S.
,
Font-Llagunes
,
J. M.
, and
Yang
,
J.
,
2022
, “
Upper Extremity Joint Torque Estimation Through an EMG-Driven Model
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
St. Louis, MO
,
Aug. 14–17
.
29.
Saul
,
K. R.
,
Hu
,
X.
,
Goehler
,
C. M.
,
Vidt
,
M. E.
,
Daly
,
M.
,
Velisar
,
A.
, and
Murray
,
W. M.
,
2015
, “
Benchmarking of Dynamic Simulation Predictions in Two Software Platforms Using an Upper Limb Musculoskeletal Model
,”
Comput. Meth. Biomech. Biomed. Eng.
,
18
(
13
), pp.
1445
1458
.
30.
Xiang
,
Y.
,
Tahmid
,
S.
,
Owens
,
P.
, and
Yang
,
J.
,
2021
, “
Single Task Optimization-Based Planar Box Delivery Motion Simulation and Experimental Validation
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
024501
.
31.
Xiang
,
Y.
,
Tahmid
,
S.
,
Owens
,
P.
, and
Yang
,
J.
,
2020
, “
Two-Dimensional Symmetric Box Delivery Motion Prediction and Validation: Subtask-Based Optimization Method
,”
Appl. Sci.
,
10
(
24
), pp.
8798
.
32.
Konrad
,
P.
,
2006
,
The ABC of EMG: A Practical Introduction to Kinesiological Electromyography
, 1st ed.,
Noraxon Inc.
,
Scottsdale, AZ
.
33.
Chowdhury
,
R. H.
,
Reaz
,
M. B.
,
Ali
,
M. A. B. M.
,
Bakar
,
A. A.
,
Chellappan
,
K.
, and
Chang
,
T. G.
,
2013
, “
Surface Electromyography Signal Processing and Classification Techniques
,”
Sensors
,
13
(
9
), pp.
12431
12466
.
34.
Schutte
,
L. M.
,
1993
,
“Using Musculoskeletal Models to Explore Strategies for Improving Performance in Electrical Stimulation-Induced Leg Cycle Ergometry,” Ph.D. dissertation, Stanford University, Stanford, CA
.
35.
Holzbaur
,
K. R.
,
Murray
,
W. M.
, and
Delp
,
S. L.
,
2005
, “
A Model of the Upper Extremity for Simulating Musculoskeletal Surgery and Analyzing Neuromuscular Control
,”
Ann. Biomed. Eng.
,
33
(
6
), pp.
829
840
.
36.
Holzbaur
,
K. R.
,
Murray
,
W. M.
,
Gold
,
G. E.
, and
Delp
,
S. L.
,
2007
, “
Upper Limb Muscle Volumes in Adult Subjects
,”
J. Biomech.
,
40
(
4
), pp.
742
749
.
37.
Holzbaur
,
K. R.
,
Delp
,
S. L.
,
Gold
,
G. E.
, and
Murray
,
W. M.
,
2007
, “
Moment-Generating Capacity of Upper Limb Muscles in Healthy Adults
,”
J. Biomech.
,
40
(
11
), pp.
2442
2449
.
38.
Murray
,
W. M.
,
Buchanan
,
T. S.
, and
Delp
,
S. L.
,
2000
, “
The Isometric Functional Capacity of Muscles That Cross the Elbow
,”
J. Biomech.
,
33
(
8
), pp.
943
952
.
39.
Youm
,
Y.
,
Flatt
,
A. E.
, and
Sprague
,
B. L.
,
1978
, “
Force Analysis of Elbow Flexors
,”
Sixth New England Bioengineering Conference Sixth New England Bioengineering Conference
,
Kingston, RI
,
Mar. 23–24
, pp.
55
59
.
40.
Naik
,
G.
,
2012
,
Computational Intelligence in Electromyography Analysis-A Perspective on Current Applications and Future Challenges
, Vol.
10
,
IntechOpen
,
London, UK
, p.
175
. DOI 10.5772/3315
41.
Kodek
,
T.
, and
Munih
,
M.
,
2003
, “
An Analysis of Static and Dynamic Joint Torques in Elbow Flexion-Extension Movements
,”
Simul. Modell. Pract. Theory
,
11
(
3–4
), pp.
297
311
.
42.
Praagman
,
M.
,
Chadwick
,
E. K. J.
,
Van der Helm
,
F. C. T.
, and
Veeger
,
H. E. J.
,
2010
, “
The Effect of Elbow Angle and External Moment on Load Sharing of Elbow Muscles
,”
J. Electromyogr. Kinesiol.
,
20
(
5
), pp.
912
922
.
43.
Staudenmann
,
D.
, and
Taube
,
W.
,
2015
, “
Brachialis Muscle Activity can be Assessed With Surface Electromyography
,”
J. Electromyogr. Kinesiol.
,
25
(
2
), pp.
199
204
.
44.
Peng
,
L.
,
Hou
,
Z. G.
, and
Wang
,
W.
,
2015
, “
A Dynamic EMG-Torque Model of Elbow Based on Neural Networks
,”
2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
, pp.
2852
2855
.
45.
Ao
,
D.
,
Shourijeh
,
M. S.
,
Patten
,
C.
, and
Fregly
,
B. J.
,
2020
, “
Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations From Measured Muscle Synergies
,”
Front. Hum. Neurosci.
,
14
, p.
588943
.
You do not currently have access to this content.