Abstract

Over the past two decades, numerous efforts have characterized manufacturing processes for sustainability performance. These efforts have been pursued primarily by manufacturing researchers in academic and governmental labs, and involve the development of frameworks, methodologies, and standards for characterizing discrete manufacturing processes and their representation as information models. Furthermore, characterization of sustainability performance of manufacturing process flows has been attempted through linking, or composing, these unit manufacturing process (UMP) models. This paper reviews these efforts and identifies existing research gaps that should be addressed by academic, industrial, and governmental researchers. The review includes the relevant sustainable manufacturing standards that have been recently published by ASTM International. A methodology for creating and extending composable models of UMPs that build upon these standards is presented. This research demonstrates how formalization of these prior efforts can address the identified gaps. It is shown that the reuse of UMP models can be enabled by encapsulating specific characteristics of complex processes into information models that can be applied for detailed process analysis and evaluation. This research proposes the concept of a template UMP information model, which can further be abstracted and customized to represent an application-specific, higher-order manufacturing process model. The template model concept is illustrated for manual and computer numerically controlled (CNC) milling processes.

References

1.
Bag
,
S.
,
Gupta
,
S.
, and
Kumar
,
S.
,
2021
, “
Industry 4.0 Adoption and 10R Advance Manufacturing Capabilities for Sustainable Development
,”
Int. J. Prod. Econ.
,
231
, p.
107844
.
2.
Sutherland
,
J. W.
,
Skerlos
,
S. J.
,
Haapala
,
K. R.
,
Cooper
,
D.
,
Zhao
,
F.
, and
Huang
,
A.
,
2020
, “
Industrial Sustainability: Reviewing the Past and Envisioning the Future
,”
ASME J. Manuf. Sci. Eng.
,
142
(
11
), p.
110806
.
3.
Stock
,
T.
, and
Seliger
,
G.
,
2016
, “
Opportunities of Sustainable Manufacturing in Industry 4.0
,”
Procedia CIRP
,
40
, pp.
536
541
.
4.
Allouche
,
J.
,
2011
, “
The Sustainability and Resilience of Global Water and Food Systems: Political Analysis of the Interplay Between Security, Resource Scarcity, Political Systems and Global Trade
,”
Food Policy
,
36
(
Suppl. 1
), pp.
S3
S8
.
5.
Hallstedt
,
S. I.
,
2017
, “
Sustainability Criteria and Sustainability Compliance Index for Decision Support in Product Development
,”
J. Cleaner Prod.
,
140
(Part 1: Systematic Leadership towards Sustainability), pp.
251
266
.
6.
Dornfeld
,
D.
, and
Wright
,
P.
,
2007
, “
‘Technology Wedges’ for Implementing Green Manufacturing
,”
Trans. Namrisme
,
35
(
1
), pp.
193
200
.
7.
Lopes Silva
,
D. A.
,
Nunes
,
A. O.
,
Piekarski
,
C. M.
,
da Silva Moris
,
V. A.
,
de Souza
,
L. S. M.
, and
Rodrigues
,
T. O.
,
2019
, “
Why Using Different Life Cycle Assessment Software Tools Can Generate Different Results for the Same Product System? A Cause–Effect Analysis of the Problem
,”
Sustain. Prod. Consum.
,
20
, pp.
304
315
.
8.
Silva
,
D.
,
Nunes
,
A. O.
,
da Silva Moris
,
A.
,
Moro
,
C.
, and
Piekarski
,
T. O. R.
,
2017
, “
How Important Is the LCA Software Tool You Choose Comparative Results From GaBi, openLCA, SimaPro and Umberto
,”
Proceedings of the CILCA 2017—VII International Conference on Life Cycle Assessment in Latin America
,
Medellin, Colombia
,
June 12–15
, pp.
10
15
.
9.
Reap
,
J.
,
Roman
,
F.
,
Duncan
,
S.
, and
Bras
,
B.
,
2008
, “
A Survey of Unresolved Problems in Life Cycle Assessment: Part 2: Impact Assessment and Interpretation
,”
Int. J. Life Cycle Assess.
,
13
(
5
), pp.
374
388
.
10.
Kellens
,
K.
,
Renaldi
,
Dewulf
,
W.
, and
Duflou
,
J. R.
,
2010
, “
The CO2PE!-Initiative (Cooperative Effort on Process Emissions in Manufacturing): International Framework for Sustainable Production
,”
Knowledge Collaboration & Learning for Sustainable Innovation: 14th European Roundtable on Sustainable Consumption and Production (ERSCP) Conference and the 6th Environmental Management for Sustainable Universities (EMSU) Conference
,
Delft, The Netherlands
,
Oct. 25–29
, p.
13
.
11.
Overcash
,
M.
,
Duflou
,
J.
,
Kellens
,
K.
,
Looman
,
K.
,
Dewulf
,
W.
,
Sutherland
,
J.
,
Twomey
,
J.
, and
Isaacs
,
J.
,
2012
, “
Unit Process Life Cycle Inventories CO2PE!—UPLCI Workshop
,”
CIRP Annals-Manufacturing Technology
,
Berkeley, CA
,
May 23
.
12.
Kellens
,
K.
,
Duflou
,
J.
,
Renaldi, Guo
,
Y.
, and
Dewulf
,
W.
,
2012
, “
Critical Comparison of Methods to Determine the Energy Input for Discrete Manufacturing Processes
,”
CIRP Ann.
,
61
(
1
), pp.
63
66
.
13.
Raman
,
A. S.
,
Harper
,
D.
,
Haapala
,
K. R.
,
Linke
,
B. S.
,
Bernstein
,
W. Z.
, and
Morris
,
K.
,
2019
, “
Challenges in Representing Manufacturing Processes for Systematic Sustainability Assessments: Workshop on June 21, 2018
,”
Proceedings of the ASME 2019 International Manufacturing Science and Engineering Conference MSEC2019
,
Erie, PA
,
June 10–14
.
14.
Shankar Raman
,
A.
,
2022
, “
An Information Modeling Framework for Support of Sustainable Manufacturing System Design Decision Making
,” Doctoral dissertation,
Oregon State University
,
Corvallis, OR
. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/r494vs85w
15.
Bernstein
,
W. Z.
,
Boettjer
,
T.
, and
Ramanujan
,
D.
,
2021
, “
Quantifying Life Cycle Inventories for Machining Processes at Detailed Design
,”
Procedia CIRP
,
98
, pp.
370
375
.
16.
Brundage
,
M. P.
,
Bernstein
,
W. Z.
,
Hoffenson
,
S.
,
Chang
,
Q.
,
Nishi
,
H.
,
Kliks
,
T.
, and
Morris
,
K. C.
,
2018
, “
Analyzing Environmental Sustainability Methods for Use Earlier in the Product Lifecycle
,”
J. Cleaner Prod.
,
187
, pp.
877
892
.
17.
Overcash
,
M.
,
Griffing
,
E.
,
Vozzola
,
E.
,
Twomey
,
J.
,
Flanagan
,
W.
, and
Isaacs
,
J.
,
2018
, “
Advancements in Unit Process Life Cycle Inventories (UPLCI) Tools
,”
Procedia CIRP
,
69
, pp.
447
450
.
18.
Mani
,
M.
,
Madan
,
J.
,
Lee
,
J. H.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2014
, “
Sustainability Characterization for Manufacturing Processes
,”
Int. J. Prod. Res.
,
52
(
20
), pp.
5895
5912
.
19.
Garretson
,
I. C.
,
2015
, “
A Unit Manufacturing Process Characterization Methodology and Supporting Terminology for Sustainable Manufacturing Assessment
,” M.S. Thesis,
Oregon State University
,
Corvallis, OR
. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/7p88ck55j
20.
Brundage
,
M. P.
,
Lechevalier
,
D.
, and
Morris
,
K.
,
2018
, “
Towards Standards-Based Generation of Reusable Life Cycle Inventory Data Models for Manufacturing Processes
,”
ASME J. Manuf. Sci. Eng.
,
141
(
2
), p.
021017
.
21.
ASTM
,
2020
, “
Standard Guide for Characterizing Environmental Aspects of Manufacturing Processes (ASTM E3012-20)
.”
22.
Raman
,
A. S.
,
Haapala
,
K. R.
,
Raoufi
,
K.
,
Linke
,
B. S.
,
Bernstein
,
W. Z.
, and
Morris
,
K. C.
,
2020
, “
Defining Near-Term to Long-Term Research Opportunities to Advance Metrics, Models, and Methods for Smart and Sustainable Manufacturing
,”
Smart Sustain. Manuf. Syst.
,
4
(
2
), p.
20190047
.
23.
Luttikhuis
,
E. O.
,
Toxopeus
,
M. E.
, and
Overcash
,
M.
,
2013
, “Applying Unit Process Life Cycle Inventory (UPLCI) Methodology in Product/Packaging Combinations,”
Re-engineering Manufacturing for Sustainability
,
A. Y. C.
Nee
,
B.
Song
, and
S.-K.
Ong
, eds.,
Springer
,
Singapore
, pp.
15
20
.
24.
Overcash
,
M.
,
Twomey
,
J.
, and
Kalla
,
D.
,
2009
, “
Unit Process Life Cycle Inventory for Product Manufacturing Operations
,”
Proceedings of the ASME International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
Oct. 4–7
, pp.
49
55
.
25.
Jiménez-González
,
C.
,
Kim
,
S.
, and
Overcash
,
M.
,
2000
, “
Methodology for Developing Gate-to-Gate Life Cycle Inventory Information
,”
Int. J. Life Cycle Assess.
,
5
(
3
), pp.
153
159
.
26.
Duflou
,
J. R.
,
Sutherland
,
J. W.
,
Dornfeld
,
D.
,
Herrmann
,
C.
,
Jeswiet
,
J.
,
Kara
,
S.
,
Hauschild
,
M.
, and
Kellens
,
K.
,
2012
, “
Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach
,”
CIRP Ann.
,
61
(
2
), pp.
587
609
.
27.
Overcash
,
M.
, and
Twomey
,
J.
,
2012
, “Unit Process Life Cycle Inventory (UPLCI)—A Structured Framework to Complete Product Life Cycle Studies,”
Leveraging Technology for a Sustainable World
,
D. A.
Dornfeld
, and
B. S.
Linke
, eds.,
Springer
,
Berlin
, pp.
1
4
.
28.
Linke
,
B.
, and
Overcash
,
M. R.
,
2017
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Grinding
,”
Prod. Eng.
,
11
(
6
), pp.
643
653
.
29.
Zhang
,
H.
, and
Zhao
,
F.
,
2019
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Gas Metal Arc Welding
,”
Prod. Eng.
,
13
(
1
), pp.
89
97
.
30.
Simon
,
T.
,
Yang
,
Y.
,
Lee
,
W. J.
,
Zhao
,
J.
,
Li
,
L.
, and
Zhao
,
F.
,
2019
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Stereolithography
,”
Prod. Eng.
,
13
(
6
), pp.
675
684
.
31.
Raoufi
,
K.
,
Harper
,
D. S.
, and
Haapala
,
K. R.
,
2020
, “
Reusable Unit Process Life Cycle Inventory for Manufacturing: Metal Injection Molding
,”
Prod. Eng.
,
14
(
5
), pp.
707
716
.
32.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
An Induction Hardening Process Model to Assist Sustainability Assessment of a Steel Bevel Gear
,”
Int. J. Adv. Manuf. Technol.
,
80
(
5
), pp.
1113
1125
.
33.
Eastwood
,
M. D.
, and
Haapala
,
K. R.
,
2015
, “
A Unit Process Model Based Methodology to Assist Product Sustainability Assessment During Design for Manufacturing
,”
J. Cleaner Prod.
,
108
(
Part A
), pp.
54
64
.
34.
Dahmus
,
J. B.
, and
Gutowski
,
T. G.
,
2004
, “
An Environmental Analysis of Machining
,”
Proceedings of the ASME 2004 International Mechanical Engineering Congress and Exposition (IMECE2004)
,
Anaheim, CA
,
Nov. 13–19
, pp.
643
652
.
35.
Murray
,
V. R.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2012
, “
Life Cycle Analysis of Grinding: A Case Study of Non-Cylindrical Computer Numerical Control Grinding Via Unit-Process Life Cycle Inventory Approach
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
226
(
10
), pp.
1604
1611
.
36.
Diaz
,
N.
,
Ninomiya
,
K.
,
Noble
,
J.
, and
Dornfeld
,
D.
,
2012
, “
Environmental Impact Characterization of Milling and Implications for Potential Energy Savings in Industry
,”
Procedia CIRP
,
1
, pp.
518
523
.
37.
Quintana
,
G.
,
Ciurana
,
J.
, and
Ribatallada
,
J.
,
2011
, “
Modelling Power Consumption in Ball-End Milling Operations
,”
Mater. Manuf. Process.
,
26
(
5
), pp.
746
756
.
38.
He
,
Y.
,
Liu
,
F.
,
Wu
,
T.
,
Zhong
,
F.-P.
, and
Peng
,
B.
,
2012
, “
Analysis and Estimation of Energy Consumption for Numerical Control Machining
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
226
(
B2
), pp.
255
266
.
39.
Cooper
,
D. R.
,
Rossie
,
K. E.
, and
Gutowski
,
T. G.
,
2017
, “
An Environmental and Cost Analysis of Stamping Sheet Metal Parts
,”
ASME J. Manuf. Sci. Eng.
,
139
(
4
), p.
041012
.
40.
Dalquist
,
S.
, and
Gutowski
,
T.
,
2004
, “
Life Cycle Analysis of Conventional Manufacturing Techniques: Sand Casting
,”
Proceedings of ASME 2004 International Mechanical Engineering Congress and Exposition (IMECE2004)
,
Anaheim, CA
,
Nov. 13–19
, pp.
631
641
.
41.
Haapala
,
K. R.
,
Catalina
,
A. V.
,
Johnson
,
M. L.
, and
Sutherland
,
J. W.
,
2012
, “
Development and Application of Models for Steelmaking and Casting Environmental Performance
,”
ASME J. Manuf. Sci. Eng.
,
134
(
5
), p.
051013
.
42.
Watkins
,
M. F.
,
Mani
,
M.
,
Lyons
,
K. W.
, and
Gupta
,
S. K.
,
2014
, “
Sustainability Characterization for Die Casting Process
,”
Proceedings of the ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 4–7
.
43.
Singh
,
P.
,
Madan
,
J.
,
Singh
,
A.
, and
Mani
,
M.
,
2012
, “
A Computer-Aided System for Sustainability Analysis for the Die-Casting Process
,”
Proceedings of the ASME 2012 International Manufacturing Science and Engineering Conference
,
Notre Dame, IN
,
June 4–8
, pp.
1087
1096
.
44.
Madan
,
J.
,
Mani
,
M.
,
Lee
,
J. H.
, and
Lyons
,
K. W.
,
2015
, “
Energy Performance Evaluation and Improvement of Unit-Manufacturing Processes: Injection Molding Case Study
,”
J. Cleaner Prod.
,
105
, pp.
157
170
.
45.
Dittrich
,
M. A.
,
Gutowski
,
T. G.
,
Cao
,
J.
,
Roth
,
J. T.
,
Xia
,
Z. C.
,
Kiridena
,
V.
,
Ren
,
F.
, and
Henning
,
H.
,
2012
, “
Exergy Analysis of Incremental Sheet Forming
,”
Prod. Eng.
,
6
(
2
), pp.
169
177
.
46.
Singh
,
K.
, and
Sultan
,
I. A.
,
2018
, “
Modelling and Evaluation of KPIs for the Assessment of Sustainable Manufacturing: An Extrusion Process Case Study
,”
Mater. Today: Proc.
,
5
(
2, Part 1
), pp.
3825
3834
.
47.
Wang
,
J.
,
Qiao
,
F.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2016
, “
A Data-Driven Model for Energy Consumption in the Sintering Process
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101001
.
48.
Shrivastava
,
A.
,
Overcash
,
M.
, and
Pfefferkorn
,
F. E.
,
2015
, “
Prediction of Unit Process Life Cycle Inventory (UPLCI) Energy Consumption in a Friction Stir Weld
,”
J. Manuf. Process.
,
18
, pp.
46
54
.
49.
Ramirez-Cedillo
,
E.
,
García-López
,
E.
,
Ruiz-Huerta
,
L.
,
Rodriguez
,
C. A.
, and
Siller
,
H. R.
,
2021
, “
Reusable Unit Process Life Cycle Inventory (UPLCI) for Manufacturing: Laser Powder Bed Fusion (L-PBF)
,”
Prod. Eng.
,
15
(
5
), pp.
701
716
.
50.
Gbededo
,
M. A.
,
Liyanage
,
K.
, and
Garza-Reyes
,
J. A.
,
2018
, “
Towards a Life Cycle Sustainability Analysis: A Systematic Review of Approaches to Sustainable Manufacturing
,”
J. Cleaner Prod.
,
184
, pp.
1002
1015
.
51.
Cai
,
W.
, and
Lai
,
K.
,
2021
, “
Sustainability Assessment of Mechanical Manufacturing Systems in the Industrial Sector
,”
Renew. Sustain. Energy Rev.
,
135
, p.
110169
.
52.
Hegab
,
H. A.
,
Darras
,
B.
, and
Kishawy
,
H. A.
,
2018
, “
Towards Sustainability Assessment of Machining Processes
,”
J. Cleaner Prod.
,
170
, pp.
694
703
.
53.
Huang
,
A.
, and
Badurdeen
,
F.
,
2017
, “
Sustainable Manufacturing Performance Evaluation: Integrating Product and Process Metrics for Systems Level Assessment
,”
Procedia Manuf.
,
8
, pp.
563
570
.
54.
Huang
,
A.
,
Badurdeen
,
F.
, and
Jawahir
,
I. S.
,
2018
, “
Towards Developing Sustainable Reconfigurable Manufacturing Systems
,”
Procedia Manuf.
,
17
, pp.
1136
1143
.
55.
International Organization for Standardization
,
2019
, “
ISO 20140-3:2019—Automation Systems and Integration—Evaluating Energy Efficiency and Other Factors of Manufacturing Systems That Influence the Environment—Part 3: Environmental Performance Evaluation Data Aggregation Process
.”
56.
ASTM
,
2018
, “
Standard Guide for Evaluation of Environmental Aspects of Sustainability of Manufacturing Processes (ASTM E2986-18)
.”
57.
Mani
,
M.
,
Larborn
,
J.
,
Johansson
,
B.
,
Lyons
,
K. W.
, and
Morris
,
K. C.
,
2016
, “
Standard Representations for Sustainability Characterization of Industrial Processes
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101008
.
58.
Rebouillat
,
L.
,
Barletta
,
I.
,
Johansson
,
B.
,
Mani
,
M.
,
Bernstein
,
W. Z.
,
Morris
,
K. C.
, and
Lyons
,
K. W.
,
2016
, “
Understanding Sustainability Data Through Unit Manufacturing Process Representations: A Case Study on Stone Production
,”
Procedia CIRP
,
57
, pp.
686
691
.
59.
Shankar Raman
,
A.
,
Haapala
,
K. R.
, and
Morris
,
K. C.
,
2018
, “
Towards a Standards-Based Methodology for Extending Manufacturing Process Models for Sustainability Assessment
,”
ASME 2018 13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
,
Paper No. MSEC2018-6707, p. V001T05A024
.
60.
Komoto
,
H.
,
Bernstein
,
W. Z.
,
Kwon
,
S.
, and
Kimura
,
F.
,
2020
, “
Standardizing Environmental Performance Evaluation of Manufacturing Systems Through ISO 20140
,”
Proceedings of 27th CIRP Life Cycle Eng. Conf. LCE2020 Advancing Life Cycle Eng. Technol. Eco-Effic. Technol. Supports World Meets Development Goals and the Absolute Sustainability
,
Virtual, Online
,
May 13–15
, pp.
528
533
.
61.
Kulkarni
,
A.
,
Bernstein
,
W. Z.
,
Lechevalier
,
D.
,
Balasubramanian
,
D.
,
Denno
,
P.
, and
Karsai
,
G.
,
2019
, “
Towards Operational Use of Unit Manufacturing Process Models
,”
Proceedings of the 2019 IEEE International Conference on Industrial Technology (ICIT)
,
Melbourne, VIC, Australia
,
Feb. 13–15
, pp.
818
823
.
62.
Smullin
,
M. M.
,
2016
, “
An Information Modeling Framework and Desktop Application to Compose Unit Manufacturing Process Models for Sustainable Manufacturing Assessment
,” M.S. thesis,
Oregon State University
,
Corvallis, OR
. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/m039k748q
63.
Smullin
,
M. M.
,
Iman
,
Z.
, and
Haapala
,
K. R.
,
2017
, “
A Desktop Application for Sustainability Performance Assessment of Composed Unit-Based Manufacturing Systems
,”
Proceedings of the 12th International Manufacturing Science and Engineering Conference
,
Los Angeles, CA
,
ASME
, p.
V004T05A022
; 11 pages.
64.
Bernstein
,
W. Z.
,
Bala Subramaniyan
,
A.
,
Brodsky
,
A.
,
Garretson
,
I. C.
,
Haapala
,
K. R.
,
Libes
,
D.
,
Morris
,
K. C.
, et al
,
2018
, “
Research Directions for an Open Unit Manufacturing Process Repository: A Collaborative Vision
,”
Manuf. Lett.
,
15
(Part B), pp.
71
75
.
65.
Bernstein
,
W. Z.
,
Lechevalier
,
D.
, and
Libes
,
D.
,
2018
, “
UMP Builder: Capturing and Exchanging Manufacturing Models for Sustainability
,”
Proceedings of the ASME 2018 13th International Manufacturing Science and Engineering Conference
,
College Station, TX
,
June 18–22
, p. V001T05A022.
66.
Brodsky
,
A.
,
Nachawati
,
M. O.
,
Krishnamoorthy
,
M.
,
Bernstein
,
W. Z.
, and
Menascé
,
D. A.
,
2019
, “
Factory Optima: A Web-Based System for Composition and Analysis of Manufacturing Service Networks Based on a Reusable Model Repository
,”
Int. J. Comput. Integr. Manuf.
,
32
(
3
), pp.
206
224
.
67.
Lósio
,
B. F.
,
Salgado
,
A. C.
, and
do Rêgo GalvĐo
,
L.
,
2003
, “
Conceptual Modeling of XML Schemas
,”
Proceedings of the 5th ACM International Workshop on Web Information and Data Management
,
New Orleans, LA
,
Nov. 7–8
, ACM, pp.
102
105
.
68.
Todd
,
R. H.
,
Allen
,
D. K.
, and
Alting
,
L.
,
1994
,
Fundamental Principles of Manufacturing Processes
,
Industrial Press
,
New York
.
69.
Groover
,
M. P.
,
2015
,
Fundamentals of Modern Manufacturing
,
Wiley
,
New York
.
70.
Sung
,
R. C.
,
Ritchie
,
J. M.
,
Lim
,
T.
, and
Kosmadoudi
,
Z.
,
2012
, “
Automated Generation of Engineering Rationale, Knowledge and Intent Representations During the Product Life Cycle
,”
Virtual Real.
,
16
(
1
), pp.
69
85
.
71.
Meihua
,
Z.
,
Aiping
,
L.
, and
Liyun
,
X.
,
2008
, “
Integrated Modeling and Information Interaction Mechanism of Collaborative Production Information
,”
Proceeding of the International Conference on Information Management, Innovation Management and Industrial Engineering
,
Taipei, Taiwan
,
Dec. 19–21
, IEEE, pp.
67
70
.
72.
Yadong
,
F.
,
Ping
,
K.
, and
Lei
,
Z.
,
2009
, “
Research and Application of Machine Tools Life-Cycle Management System Based on Web
,”
Proceedings of the ISECS International Colloquium on Computing, Communication, Control, and Management
,
Sanya, China
,
Aug. 8–9
, IEEE, pp.
117
120
.
73.
Guha
,
R. V.
,
Brickley
,
D.
, and
Macbeth
,
S.
,
2016
, “
Schema.org: Evolution of Structured Data on the Web
,”
Commun. ACM
,
59
(
2
), pp.
44
51
.
74.
Dennis
,
A.
,
Wixom
,
B. H.
,
Tegarden
,
D. P.
, and
Seeman
,
E.
,
2015
,
System Analysis & Design: An Object-Oriented Approach With UML
,
Wiley
,
Hoboken, NJ
.
75.
Carlson
,
D.
,
2001
,
Modeling XML Applications With UML: Practical e-Business Applications
,
Addison-Wesley
,
Boston, MA
.
76.
van der Vlist
,
E.
,
2004
,
RELAX NG
,
O’Reilly
,
Sebastopol, CA
.
77.
Kara
,
S.
, and
Li
,
W.
,
2011
, “
Unit Process Energy Consumption Models for Material Removal Processes
,”
CIRP Ann.
,
60
(
1
), pp.
37
40
.
78.
Avram
,
O. I.
, and
Xirouchakis
,
P.
,
2011
, “
Evaluating the Use Phase Energy Requirements of a Machine Tool System
,”
J. Cleaner Prod.
,
19
(
6–7
), pp.
699
711
.
79.
Overcash
,
M.
,
Twomey
,
J.
, and
Kalla
,
D.
,
2020
, “
Unit Process Life Cycle Inventory for Product Manufacturing Operations
,”
Proceedings of the ASME 2009 International Manufacturing Science and Engineering Conference
,
West Lafayette, IN
,
Oct. 4–7
,
80.
Branker
,
K.
,
2011
, “
A Study of Energy, Carbon Dioxide Emissions and Economics in Machining: Milling and Single Point Incremental Forming
,” M.S. Thesis,
Queen's University
,
Kingston, Ontario, Canada
. https://qspace.library.queensu.ca/bitstream/handle/1974/6897/Branker_Kadra_201112_MASC.pdf;sequence=1
81.
He
,
Y.
,
Liu
,
B.
,
Zhang
,
X.
,
Gao
,
H.
, and
Liu
,
X.
,
2012
, “
A Modeling Method of Task-Oriented Energy Consumption for Machining Manufacturing System
,”
J. Cleaner Prod.
,
23
(
1
), pp.
167
174
.
82.
Overcash
,
M.
,
Twomey
,
J.
,
Isaacs
,
J.
,
Duflou
,
J.
, and
Sutherland
,
J.
,
2010
, “
Energy Efficiency Improvements in Manufacturing Life Cycle Technology for Analysis of Machines and Products
,” Soc. Manuf. Eng. Tech. Pap. TP10PUB8 Dearborn, MI, p.
5
.
83.
Li
,
W.
,
Zein
,
A.
,
Kara
,
S.
, and
Herrmann
,
C.
,
2011
, “
An Investigation into Fixed Energy Consumption of Machine Tools
,”
Proceedings of the 18th CIRP International Conference on Life Cycle Engineering
,
Technische Universität Braunschweig, Braunschweig, Germany
,
May 2–4
, pp.
268
273
.
You do not currently have access to this content.