Abstract

Inverse prediction models have commonly been developed to handle scalar data from physical experiments. However, it is not uncommon for data to be collected in functional form. When data are collected in functional form, it must be aggregated to fit the form of traditional methods, which often results in a loss of information. For expensive experiments, this loss of information can be costly. This paper introduces the functional inverse prediction (FIP) framework, a general approach which uses the full information in functional response data to provide inverse predictions with probabilistic prediction uncertainties obtained with the bootstrap. The FIP framework is a general methodology that can be modified by practitioners to accommodate many different applications and types of data. We demonstrate the framework, highlighting points of flexibility, with a simulation example and applications to weather data and to nuclear forensics. Results show how functional models can improve the accuracy and precision of predictions.

References

1.
Wells
,
J.
, and
LaMotte
,
L. R.
,
1995
, “
Estimating Maggot Age From Weight Using Inverse Prediction
,”
J. Forensic Sci.
,
40
(
4
), pp.
585
590
.
2.
Lewis
,
J. R.
,
Zhang
,
A.
, and
Anderson-Cook
,
C. M.
,
2018
, “
Comparing Multiple Statistical Methods for Inverse Prediction in Nuclear Forensics Applications
,”
Chemom. Intell. Lab. Syst.
,
175
, pp.
116
129
.
3.
Ries
,
D.
,
Lewis
,
J.
,
Zhang
,
A.
,
Anderson-Cook
,
C.
,
Wilkerson
,
M.
,
Wagner
,
G.
, and
Gravelle
,
J.
,
2019
, “
Utilizing Distributional Measurements of Material Characteristics From SEM Images for Inverse Prediction.
,”
J. Nucl. Mater. Manage.
,
XLVII
(
1
), pp.
37
46
.
4.
Haaland
,
D. M.
, and
Thomas
,
E. V.
,
1988
, “
Partial Least-Squares Methods for Spectral Analyses. 1. Relation to Other Quantitative Calibration Methods and the Extraction of Qualitative Information
,”
Anal. Chem.
,
60
(
11
), pp.
1193
1202
.
5.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc.: Seri. B (Stat. Methodol.)
,
63
(
3
), pp.
425
464
.
6.
Martens
,
H.
, and
Naes
,
T.
,
1992
,
Multivariate Calibration
,
John Wiley & Sons
,
New York
.
7.
Kaaks
,
R.
,
Riboli
,
E.
, and
Van Staveren
,
W.
,
1995
, “
Calibration of Dietary Intake Measurements in Prospective Cohort Studies
,”
Am. J. Epidemiol.
,
142
(
5
), pp.
548
556
.
8.
Krasnopolsky
,
V. M.
, and
Schiller
,
H.
,
2003
, “
Some Neural Network Applications in Environmental Sciences. Part I: Forward and Inverse Problems in Geophysical Remote Measurements
,”
Neural Netw.
,
16
(
3-4
), pp.
321
334
.
9.
Sun
,
N.-Z.
,
2013
,
Inverse Problems in Groundwater Modeling
, Vol.
6
,
Springer Science & Business Media
,
New York
.
10.
Myers
,
R. H.
,
Montgomery
,
D. C.
, and
Anderson-Cook
,
C. M.
,
2016
,
Response Surface Methodology: Process and Product Optimization Using Designed Experiments
,
John Wiley & Sons
,
Hoboken, NJ
.
11.
Anderson-Cook
,
C.
,
Burr
,
T.
,
Hamada
,
M. S.
,
Ruggiero
,
C.
, and
Thomas
,
E. V.
,
2015
, “
Design of Experiments and Data Analysis Challenges in Calibration for Forensics Applications
,”
Chemom. Intell. Lab. Syst.
,
149
(
B
), pp.
107
117
.
12.
Anderson-Cook
,
C. M.
,
Hamada
,
M. S.
, and
Burr
,
T.
,
2016
, “
The Impact of Response Measurement Error on the Analysis of Designed Experiments
,”
Q. Reliab. Eng. Inter.
,
32
(
7
), pp.
2415
2433
.
13.
Higdon
,
D.
,
Kennedy
,
M.
,
Cavendish
,
J. C.
,
Cafeo
,
J. A.
, and
Ryne
,
R. D.
,
2004
, “
Combining Field Data and Computer Simulations for Calibration and Prediction
,”
SIAM J. Sci. Comput.
,
26
(
2
), pp.
448
466
.
14.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightly
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
.
15.
Lee
,
G.
,
Kim
,
W.
,
Oh
,
H.
,
Youn
,
B.
, and
Kim
,
N. H.
,
2019
, “
Review of Statistical Model Calibration and Validation–From the Perspective of Uncertainty Structures
,”
Struct. Multidiscipl. Optim.
,
60
, pp.
1619
1644
.
16.
Oberkampf
,
W. L.
, and
Trucano
,
T. G.
,
2002
, “
Verification and Validation in Computational Fluid Dynamics
,”
Prog. Aerosp. Sci.
,
38
, pp.
209
272
.
17.
Roy
,
C. J.
, and
Oberkampf
,
W. L.
,
2011
, “
A Comprehensive Framework for Verification, Validation, and Uncertainty Quantification in Scientific Computing
,”
Comput. Methods. Appl. Mech. Eng.
,
200
, pp.
2131
2144
.
18.
Ramsay
,
J. O.
, and
Silverman
,
B. W.
,
2005
,
Functional Data Analysis
,
Springer
,
New York
.
19.
Srivastava
,
A.
, and
Klassen
,
E. P.
,
2016
,
Functional and Shape Data Analysis
,
Springer
,
New York
.
20.
De Boor
,
C.
, and
De Boor
,
C.
,
1978
,
A Practical Guide to Splines
, Vol.
27
,
Springer-Verlag
,
New York
.
21.
Daubechies
,
I.
,
1992
,
10 Lectures on Wavelets
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
22.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
.
23.
Efron
,
B.
, and
Tibshirani
,
R.
,
1994
,
An Introduction to the Bootstrap
,
Chapman & Hall, New York
.
24.
Ramsay
,
J. O.
,
Graves
,
S.
, and
Hooker
,
G.
,
2021
, fda: Functional Data Analysis. R package version 5.5.0.
25.
Porter
,
R.
,
Ruggiero
,
C.
,
Harvey
,
N.
,
Kelly
,
P.
,
Tandon
,
L.
,
Wilkerson
,
M.
,
Kuhn
,
K.
, and
Schwartz
,
D.
,
2016
, MAMA User Guide v 1.2. Technical Report, Los Alamos National Lab. (LANL), Los Alamos, NM (United States).
26.
Srivastava
,
A.
,
Klassen
,
E.
,
Joshi
,
S.
, and
Jermyn
,
I.
,
2011
, “
Shape Analysis of Elastic Curves in Euclidean Spaces
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
33
(
7
), pp.
1415
1428
.
27.
Tucker
,
J. D.
,
Wu
,
W.
, and
Srivastava
,
A.
,
2013
, “
Generative Models for Functional Data Using Phase and Amplitude Separation
,”
Comput. Stat. Data Anal.
,
61
(
C
), pp.
50
66
.
28.
Marron
,
J. S.
,
Ramsay
,
J.
,
Sangalli
,
L.
, and
Srivastava
,
A.
,
2015
, “
Functional Data Analysis of Amplitude and Phase Variation
,”
Stat. Sci.
,
30
(
4
), pp.
468
484
.
29.
Xu
,
L.
,
Gotwalt
,
C.
,
Hong
,
Y.
,
King
,
C. B.
, and
Meeker
,
W. Q.
,
2020
, “
Applications of the Fractional-Random-Weight Bootstrap
,”
Am. Stat.
,
4
(
74
), pp.
345
358
.
You do not currently have access to this content.