Abstract

Metal additive manufacturing (MAM) offers a larger design space with greater manufacturability than traditional manufacturing. Despite continued advances, MAM processes still face huge uncertainty, resulting in variable part quality. Real-time sensing for MAM processing helps quantify uncertainty by detecting build failure and process anomalies. While the high volume of multidimensional sensor data—such as melt-pool geometries and temperature gradients—is beginning to be explored, sensor selection does not yet effectively link sensor data to part quality. To begin investigating such connections, we propose network-based models that capture in real-time (1) sensor data's association with process variables and (2) as-built part qualities’ association with related physical phenomena. These sensor models and networks lay the foundation for a comprehensive framework to monitor and manage the quality of MAM process outcomes.

References

1.
Seifi
,
M.
,
Salem
,
A.
,
Beuth
,
J.
,
Harrysson
,
O.
, and
Lewandowski
,
J. J.
,
2016
, “
Overview of Materials Qualification Needs for Metal Additive Manufacturing
,”
JOM
,
68
(
3
), pp.
747
764
.
2.
Zou
,
S.
,
Pang
,
L.
,
Xu
,
C.
, and
Xiao
,
X.
,
2022
, “
Effect of Process Parameters on Distortions Based on the Quantitative Model in the SLM Process
,”
Appl. Sci.
,
12
(
3
), p.
1567
.
3.
Chua
,
Z. Y.
,
Ahn
,
I. H.
, and
Moon
,
S. K.
,
2017
, “
Process Monitoring and Inspection Systems in Metal Additive Manufacturing: Status and Applications
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
4
(
2
), pp.
235
245
.
4.
Yan
,
W.
,
Lu
,
Y.
,
Jones
,
K.
,
Yang
,
Z.
,
Fox
,
J.
,
Witherell
,
P.
,
Wagner
,
G.
, and
Liu
,
W. K.
,
2020
, “
Data-Driven Characterization of Thermal Models for Powder-Bed-Fusion Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101503
.
5.
Farshidianfar
,
M. H.
,
Khajepour
,
A.
, and
Gerlich
,
A. P.
,
2016
, “
Effect of Real-Time Cooling Rate on Microstructure in Laser Additive Manufacturing
,”
J. Mater. Process. Technol.
,
231
, pp.
468
478
.
6.
Xiao
,
X.
, and
Joshi
,
S.
,
2020
, “
Process Planning for Five-Axis Support Free Additive Manufacturing
,”
Addit. Manuf.
,
36
, p.
101569
.
7.
DebRoy
,
T.
,
Wei
,
H. L.
,
Zuback
,
J. S.
,
Mukherjee
,
T.
,
Elmer
,
J. W.
,
Milewski
,
J. O.
,
Beese
,
A. M.
,
Wilson-Heid
,
A. D.
,
De
,
A.
, and
Zhang
,
W.
,
2018
, “
Additive Manufacturing of Metallic Components–Process, Structure and Properties
,”
Prog. Mater. Sci.
,
92
, pp.
112
224
.
8.
Carroll
,
B. E.
,
Palmer
,
T. A.
, and
Beese
,
A. M.
,
2015
, “
Anisotropic Tensile Behavior of Ti–6Al–4 V Components Fabricated With Directed Energy Deposition Additive Manufacturing
,”
Acta Mater.
,
87
, pp.
309
320
.
9.
Xiao
,
X.
, and
Xiao
,
H.
,
2021
, “
Autonomous Robotic Feature-Based Freeform Fabrication Approach
,”
Materials
,
15
(
1
), p.
247
.
10.
Xiao
,
X.
, and
Joshi
,
S.
,
2018
, “
Automatic Toolpath Generation for Heterogeneous Objects Manufactured by Directed Energy Deposition Additive Manufacturing Process
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071005
.
11.
Xiao
,
X.
, and
Roh
,
B. M.
,
2021
, “
Automatic Parametric Modeling From Non-Feature Based Designs for Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
Aug. 17–19
, Vol. 85390, p. V03BT03A023.
12.
Yang
,
H.
,
Rao
,
P.
,
Simpson
,
T.
,
Lu
,
Y.
,
Witherell
,
P.
,
Nassar
,
A. R.
,
Reutzel
,
E.
, and
Kumara
,
S.
,
2020
, “
Six-Sigma Quality Management of Additive Manufacturing
,”
Proc. IEEE
,
109
(
4
), pp.
347
376
.
13.
Moges
,
T.
,
Ameta
,
G.
, and
Witherell
,
P.
,
2019
, “
A Review of Model Inaccuracy and Parameter Uncertainty in Laser Powder Bed Fusion Models and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
141
(
4
), p.
040801
.
14.
Kim
,
H.
,
Lin
,
Y.
, and
Tseng
,
T. L. B.
,
2018
, “
A Review on Quality Control in Additive Manufacturing
,”
Rapid Prototyp. J
,
24
(
3
), pp.
645
669
.
15.
Berumen
,
S.
,
Bechmann
,
F.
,
Lindner
,
S.
,
Kruth
,
J. P.
, and
Craeghs
,
T.
,
2010
, “
Quality Control of Laser-and Powder Bed-Based Additive Manufacturing (AM) Technologies
,”
Phys. Proc.
,
5
, pp.
617
622
.
16.
Xiao
,
X.
,
Roh
,
B. M.
, and
Hamilton
,
C.
,
2022
, “
Porosity Management and Control in Powder Bed Fusion Process Through Process-Quality Interactions
,”
CIRP J. Manuf. Sci. Technol.
,
38
, pp.
120
128
.
17.
Xiao
,
X.
,
Roh
,
B. M.
, and
Zhu
,
F.
,
2021
, “
Strength Enhancement in Fused Filament Fabrication Via the Isotropy Toolpath
,”
Appl. Sci.
,
11
(
13
), p.
6100
.
18.
Oliveira
,
J. P.
,
LaLonde
,
A. D.
, and
Ma
,
J.
,
2020
, “
Processing Parameters in Laser Powder Bed Fusion Metal Additive Manufacturing
,”
Mater. Des.
,
193
, p.
108762
.
19.
Xiao
,
X.
,
Waddell
,
C.
,
Hamilton
,
C.
, and
Xiao
,
H.
,
2022
, “
Quality Prediction and Control in Wire Arc Additive Manufacturing Via Novel Machine Learning Framework
,”
Micromachines
,
13
(
1
), p.
137
.
20.
Yakout
,
M.
,
Elbestawi
,
M. A.
, and
Veldhuis
,
S. C.
,
2018
, “
A Review of Metal Additive Manufacturing Technologies
,”
Solid State Phenomena
,
278
, pp.
1
14
.
21.
Rao
,
P. K.
,
Liu
,
J. P.
,
Roberson
,
D.
,
Kong
,
Z. J.
, and
Williams
,
C.
,
2015
, “
Online Real-Time Quality Monitoring in Additive Manufacturing Processes Using Heterogeneous Sensors
,”
ASME J. Manuf. Sci. Eng.
,
137
(
6
), p.
061007
.
22.
Lu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Monitoring Temperature in Additive Manufacturing With Physics-Based Compressive Sensing
,”
J. Manuf. Syst.
,
48
, pp.
60
70
.
23.
Spears
,
T. G.
, and
Gold
,
S. A.
,
2016
, “
In-Process Sensing in Selective Laser Melting (SLM) Additive Manufacturing
,”
Integr. Mater. Manuf. Innov.
,
5
(
1
), pp.
16
40
.
24.
Salama
,
M.
,
Elkaseer
,
A.
,
Saied
,
M.
,
Ali
,
H.
, and
Scholz
,
S.
,
2018
, “
Industrial Internet of Things Solution for Real-Time Monitoring of the Additive Manufacturing Process
,”
International Conference on Information Systems Architecture and Technology
,
Cham, Switzerland
,
Aug. 28
, pp.
355
365
.
25.
Shevchik
,
S. A.
,
Kenel
,
C.
,
Leinenbach
,
C.
, and
Wasmer
,
K.
,
2018
, “
Acoustic Emission for In Situ Quality Monitoring in Additive Manufacturing Using Spectral Convolutional Neural Networks
,”
Addit. Manuf.
,
21
, pp.
598
604
.
26.
Nassar
,
A. R.
,
Spurgeon
,
T. J.
, and
Reutzel
,
E. W.
,
2014
, “
Sensing Defects During Directed-Energy Additive Manufacturing of Metal Parts Using Optical Emissions Spectroscopy
,”
Solid Freeform Fabrication Symposium Proceedings
,
Austin, TX
,
Aug. 4–6
, pp.
278
287
.
27.
Yadav
,
P.
,
Rigo
,
O.
,
Arvieu
,
C.
,
Le Guen
,
E.
, and
Lacoste
,
E.
,
2020
, “
In Situ Monitoring Systems of the SLM Process: On the Need to Develop Machine Learning Models for Data Processing
,”
Crystals
,
10
(
6
), p.
524
.
28.
Kantareddy
,
S. N. R.
,
Roh
,
B. M.
,
Simpson
,
T. W.
,
Joshi
,
S.
,
Dickman
,
C.
, and
Lehtihet
,
E. A.
,
2016
, “
Saving Weight With Metallic Lattice Structures: Design Challenges With a Real-World Example
,”
2016 International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
.
29.
Witherell
,
P.
,
Feng
,
S.
,
Simpson
,
T. W.
,
Saint John
,
D. B.
,
Michaleris
,
P.
,
Liu
,
Z. K.
,
Chen
,
L. Q.
, and
Martukanitz
,
R.
,
2014
, “
Toward Metamodels for Composable and Reusable Additive Manufacturing Process Models
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061025
.
30.
Roh
,
B. M.
,
Kumara
,
S. R.
,
Simpson
,
T. W.
,
Michaleris
,
P.
,
Witherell
,
P.
, and
Assouroko
,
I.
,
2016
, “
Ontology-Based Laser and Thermal Metamodels for Metal-Based Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
, Vol. 50077, p. V01AT02A043.
31.
Roh
,
B. M.
,
Kumara
,
S. R.
,
Yang
,
H.
,
Simpson
,
T. W.
,
Witherell
,
P.
, and
Lu
,
Y.
,
2021
, “
In-Situ Observation Selection for Quality Management in Metal Additive Manufacturing
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Conference
,
Aug. 17–19
.
32.
Mani
,
M.
,
Feng
,
S.
,
Brandon
,
L.
,
Donmez
,
A.
,
Moylan
,
S.
, and
Fesperman
,
R.
,
2015
,
Measurement Science Needs for Real-Time Control of Additive Manufacturing Powder-bed Fusion Processes
,
NISTIR, Report No. 8036
. https://nvlpubs.nist.gov/nistpubs/ir/2015/NIST.IR.8036.pdf
33.
Yao
,
X.
,
Moon
,
S. K.
, and
Bi
,
G.
,
2017
, “
A Hybrid Machine Learning Approach for Additive Manufacturing Design Feature Recommendation
,”
Rapid Prototyp. J
,
23
(
6
), pp.
983
997
.
34.
Dimassi
,
S.
,
Demoly
,
F.
,
Cruz
,
C.
,
Qi
,
H. J.
,
Kim
,
K. Y.
,
André
,
J. C.
, and
Gomes
,
S.
,
2021
, “
An Ontology-Based Framework to Formalize and Represent 4D Printing Knowledge in Design
,”
Comput. Ind.
,
126
, p.
103374
.
35.
Hagedorn
,
T. J.
,
Krishnamurty
,
S.
, and
Grosse
,
I. R.
,
2018
, “
A Knowledge-Based Method for Innovative Design for Additive Manufacturing Supported by Modular Ontologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
2
), p.
021009
.
36.
Dinar
,
M.
, and
Rosen
,
D. W.
,
2017
, “
A Design for Additive Manufacturing Ontology
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
2
), p.
021013
.
37.
Sachs
,
E.
,
Cima
,
M.
,
Cornie
,
J.
,
Brancazio
,
D.
,
Bredt
,
J.
,
Curodeau
,
A.
,
Fan
,
T.
, et al
,
1993
, “
Three-Dimensional Printing: the Physics and Implications of Additive Manufacturing
,”
CIRP Ann.
,
42
(
1
), pp.
257
260
.
38.
Pal
,
D.
,
Patil
,
N.
,
Zeng
,
K.
, and
Stucker
,
B.
,
2014
, “
An Integrated Approach to Additive Manufacturing Simulations Using Physics Based, Coupled Multiscale Process Modeling
,”
ASME J. Manuf. Sci. Eng.
,
136
(
6
), p.
061022
.
39.
King
,
W. E.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
,
Khairallah
,
S. A.
, and
Rubenchik
,
A. M.
,
2015
, “
Laser Powder Bed Fusion Additive Manufacturing of Metals; Physics, Computational, and Materials Challenges
,”
Appl. Phys. Rev.
,
2
(
4
), p.
041304
.
40.
Roh
,
B. M.
,
Kumara
,
S. R.
,
Witherell
,
P.
, and
Simpson
,
T. W.
,
2021
, “
Ontology-Based Process Map for Metal Additive Manufacturing
,”
J. Mater. Eng. Perform.
,
30
(
12
), pp.
8784
8797
.
41.
Roh
,
B. M.
,
2017
, “
Ontology-Based Metamodeling and Data Mining for Metal Additive Manufacturing
,”
Master’s thesis
,
The Pennsylvania State University
,
University Park, PA
.
42.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
,
Birnbaum
,
A. J.
, and
Lambrakos
,
S. G.
,
2018
, “
On the Multiphysics Modeling Challenges for Metal Additive Manufacturing Processes
,”
Addit. Manuf.
,
22
, pp.
784
799
.
43.
Ali
,
M. M.
,
Rai
,
R.
,
Otte
,
J. N.
, and
Smith
,
B.
,
2019
, “
A Product Life Cycle Ontology for Additive Manufacturing
,”
Comp. Ind.
,
105
, pp.
191
203
.
44.
Feng
,
S. C.
,
Lu
,
Y.
, and
Jones
,
A. T.
,
2020
, “
Meta-Data for In-Situ Monitoring of Laser Powder Bed Fusion Processes
,”
ASME 2020 15th International Manufacturing Science and Engineering Conference
,
Virtual Conference
,
Sept. 3
.
45.
Musen
,
M. A.
,
2015
, “
The Protégé Project: A Look Back and a Look Forward
,”
AI Matters
,
1
(
4
), pp.
4
12
.
46.
Noy
,
N. F.
, and
McGuinness
,
D. L.
,
2001
, Ontology Development 101: A Guide to Creating Your First Ontology.
47.
Bastian
,
M.
,
Heymann
,
S.
, and
Jacomy
,
M.
,
2009
, “
Gephi: An Open Source Software for Exploring and Manipulating Networks
,”
the International AAAI Conference on Web and Social Media
,
San Jose, CA
,
May 17–20
.
48.
Goldak
,
J.
,
Chakravarti
,
A.
, and
Bibby
,
M.
,
1984
, “
A New Finite Element Model for Welding Heat Sources
,”
Metall. Trans. B
,
15
(
2
), pp.
299
305
.
49.
Baheti
,
R.
, and
Gill
,
H.
,
2011
, “
Cyber-Physical Systems
,”
Impact Control Technol.
,
12
(
1
), pp.
161
166
.
You do not currently have access to this content.