Abstract

Patent data have long been used for engineering design research because of its large and expanding size and widely varying massive amount of design information contained in patents. Recent advances in artificial intelligence and data science present unprecedented opportunities to develop data-driven design methods and tools, as well as advance design science, using the patent database. Herein, we survey and categorize the patent-for-design literature based on its contributions to design theories, methods, tools, and strategies, as well as the types of patent data and data-driven methods used in respective studies. Our review highlights promising future research directions in patent data-driven design research and practice.

References

1.
Altshuller
,
G. S.
, and
Rafael
,
B. S.
,
1956
, “
Psychology of Inventive Creativity
,”
Issues Psychol.
,
6
, pp.
37
49
.
2.
Fuge
,
M.
,
Tee
,
K.
,
Agogino
,
A.
, and
Maton
,
N.
,
2014
, “
Analysis of Collaborative Design Networks: A Case Study of OpenIDEO
,”
ASME J. Comput. Inf. Sci. Eng.
,
14
(
2
), p.
021009
.
3.
Bohm
,
M. R.
,
Vucovich
,
J. P.
, and
Stone
,
R. B.
,
2008
, “
Using a Design Repository to Drive Concept Generation
,”
ASME J. Comput. Inf. Sci. Eng.
,
8
(
1
), p.
014502
.
4.
Siddharth
,
L.
,
Blessing
,
L. T. M.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Engineering Knowledge Graph From Patent Database
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021008
.
5.
Jiang
,
S.
,
Luo
,
J.
,
Ruiz-pava
,
G.
,
Hu
,
J.
, and
Magee
,
C. L.
,
2021
, “
Deriving Design Feature Vectors for Patent Images Using Convolutional Neural Networks
,”
ASME J. Mech. Des.
,
143
(
6
), p.
061405
.
6.
Sarica
,
S.
,
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2021
, “
Idea Generation With Technology Semantic Network
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
35
(
3
), pp.
265
283
.
7.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2021
, “
Guiding Data-Driven Design Ideation by Knowledge Distance
,”
Knowl. Based Syst.
,
218
, p.
106873
.
8.
Song
,
H.
,
Evans
,
J.
, and
Fu
,
K.
,
2020
, “
An Exploration-Based Approach to Computationally Supported Design-by-Analogy Using D3
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
34
(
4
), pp.
444
457
.
9.
Liu
,
L.
,
Li
,
Y.
,
Xiong
,
Y.
, and
Cavallucci
,
D.
,
2020
, “
A New Function-Based Patent Knowledge Retrieval Tool for Conceptual Design of Innovative Products
,”
Comput. Ind.
,
115
, p.
103154
.
10.
Song
,
H.
, and
Fu
,
K.
,
2019
, “
Design-by-Analogy: Exploring for Analogical Inspiration With Behavior, Material, and Component-Based Structural Representation of Patent Databases
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021014
.
11.
Atherton
,
M.
,
Jiang
,
P.
,
Harrison
,
D.
, and
Malizia
,
A.
,
2018
, “
Design for Invention: Annotation of Functional Geometry Interaction for Representing Novel Working Principles
,”
Res. Eng. Des.
,
29
(
2
), pp.
245
262
.
12.
Jiang
,
P.
,
Atherton
,
M.
,
Sorce
,
S.
,
Harrison
,
D.
, and
Malizia
,
A.
,
2018
, “
Design for Invention: A Framework for Identifying Emerging Design–Prior Art Conflict
,”
J. Eng. Des.
,
29
(
10
), pp.
596
615
.
13.
Jiang
,
S.
,
Hu
,
J.
,
Magee
,
C. L.
, and
Luo
,
J.
,
2022
, “
Deep Learning for Technical Document Classification
,”
IEEE Trans. Eng. Manage.
, pp.
1
17
.
14.
Fu
,
K.
,
Cagan
,
J.
,
Kotovsky
,
K.
, and
Wood
,
K.
,
2013
, “
Discovering Structure in Design Databases Through Functional and Surface Based Mapping
,”
ASME J. Mech. Des.
,
135
(
3
), p.
031006
.
15.
Song
,
B.
,
Yan
,
B.
,
Triulzi
,
G.
,
Alstott
,
J.
, and
Luo
,
J.
,
2019
, “
Overlay Technology Space Map for Analyzing Design Knowledge Base of a Technology Domain: The Case of Hybrid Electric Vehicles
,”
Res. Eng. Des.
,
30
(
3
), pp.
405
423
.
16.
Luo
,
J.
, and
Wood
,
K. L.
,
2017
, “
The Growing Complexity in Invention Process
,”
Res. Eng. Des.
,
28
(
4
), pp.
421
435
.
17.
Song
,
B.
, and
Luo
,
J.
,
2017
, “
Mining Patent Precedents for Data-Driven Design: The Case of Spherical Rolling Robots
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111420
.
18.
Alstott
,
J.
,
Triulzi
,
G.
,
Yan
,
B.
, and
Luo
,
J.
,
2017
, “
Inventors’ Explorations Across Technology Domains
,”
Des. Sci.
,
3
(
e20
), pp.
1
29
.
19.
Smojver
,
V.
,
Štorga
,
M.
, and
Potočki
,
E.
,
2016
, “
An Extended Methodology for the Assessment of Technical Invention Evolution
,”
International Design Conference (DESIGN2016)
,
Dubrovnik, Croatia
,
May 16–19
, pp.
1135
1144
.
20.
Ishii
,
T.
,
Parque
,
V.
,
Miura
,
S.
, and
Miyashita
,
T.
,
2017
, “
Definition and Support of Differentiation and Integration in Mechanical Structure Using S-Curve Theory and Wavelet Transform
,”
International Conference on Engineering Design (ICED17)
,
Vancouver, Canada
,
Aug. 21–25
, pp.
355
364
.
21.
Chan
,
T.
,
Mihm
,
J.
, and
Sosa
,
M.
,
2012
, “
A Structured Approach to Identify Styles in Design
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2012)
,
Chicago, IL
,
Aug. 12–15
, pp.
541
550
.
22.
Sarica
,
S.
,
Luo
,
J.
, and
Wood
,
K. L.
,
2020
, “
TechNet: Technology Semantic Network Based on Patent Data
,”
Expert Syst. Appl.
,
142
, p.
112995
.
23.
Russo
,
D.
,
Montecchi
,
T.
, and
Liu
,
Y.
,
2012
, “
Functional-Based Search for Patent Technology Transfer
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2012)
,
Chicago, IL, Aug
. 12–15, pp.
529
539
.
24.
Sarica
,
S.
,
Song
,
B.
,
Low
,
E.
, and
Luo
,
J.
,
2019
, “
Engineering Knowledge Graph for Keyword Discovery in Patent Search
,”
International Conference on Engineering Design (ICED19)
,
The Netherlands
,
Aug. 5–8
, pp.
2249
2258
.
25.
Fu
,
K.
,
Chan
,
J.
,
Schunn
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2013
, “
Expert Representation of Design Repository Space: A Comparison to and Validation of Algorithmic Output
,”
Des. Stud.
,
34
(
6
), pp.
729
762
.
26.
Hagedorn
,
T. J.
,
Grosse
,
I. R.
, and
Krishnamurty
,
S.
,
2015
, “
A Concept Ideation Framework for Medical Device Design
,”
J. Biomed. Inform.
,
55
, pp.
218
230
.
27.
Li
,
M.
,
Ming
,
X.
,
Zheng
,
M.
,
Xu
,
Z.
, and
He
,
L.
,
2013
, “
A Framework of Product Innovative Design Process Based on TRIZ and Patent Circumvention
,”
J. Eng. Des.
,
24
(
12
), pp.
830
848
.
28.
Van Wie
,
M.
,
Bryant
,
C. R.
,
Bohm
,
M. R.
,
McAdams
,
D. A.
, and
Stone
,
R. B.
,
2005
, “
A Model of Function-Based Representations
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
89
111
.
29.
Vandevenne
,
D.
,
Verhaegen
,
P.-A.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2016
, “
SEABIRD: Scalable Search for Systematic Biologically Inspired Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
30
(
1
), pp.
78
95
.
30.
Verhaegen
,
P.
,
Joris
,
D.
,
Vandevenne
,
D.
,
Dewulf
,
S.
, and
Duflou
,
J. R.
,
2011
, “
Identifying Candidates for Design-by-Analogy
,”
Comput. Ind.
,
62
(
4
), pp.
446
459
.
31.
Melluso
,
N.
,
Pardelli
,
S.
,
Fantoni
,
G.
,
Chiarello
,
F.
, and
Bonaccorsi
,
A.
,
2021
, “
Detecting Bad Design and Bias From Patents
,”
International Conference on Engineering Design (ICED21)
,
Gothenburg, Sweden
,
Aug. 16–20
, pp.
1173
1182
.
32.
Li
,
Z.
, and
Tate
,
D.
,
2010
, “
Automatic Function Interpretation: Using Natural Language Processing on Patents to Understand Design Purposes
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2010)
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
443
452
.
33.
Song
,
B.
,
Luo
,
J.
, and
Wood
,
K.
,
2019
, “
Data-Driven Platform Design: Patent Data and Function Network Analysis
,”
ASME J. Mech. Des.
,
141
(
2
), p.
021101
.
34.
Fu
,
K.
,
Murphy
,
J.
,
Yang
,
M.
,
Otto
,
K.
,
Jensen
,
D.
, and
Wood
,
K.
,
2015
, “
Design-by-Analogy: Experimental Evaluation of a Functional Analogy Search Methodology for Concept Generation Improvement
,”
Res. Eng. Des.
,
26
(
1
), pp.
77
95
.
35.
Murphy
,
J.
,
Fu
,
K.
,
Otto
,
K.
,
Yang
,
M.
,
Jensen
,
D.
, and
Wood
,
K.
,
2014
, “
Function Based Design-by-Analogy: A Functional Vector Approach to Analogical Search
,”
ASME J. Mech. Des.
,
136
(
10
), p.
101102
.
36.
Fu
,
K.
,
Chan
,
J.
,
Cagan
,
J.
,
Kotovsky
,
K.
,
Schunn
,
C.
, and
Wood
,
K.
,
2013
, “
The Meaning of ‘Near’ and ‘Far’: The Impact of Structuring Design Databases and the Effect of Distance of Analogy on Design Output
,”
ASME J. Mech. Des.
,
135
(
2
), p.
021007
.
37.
Fantoni
,
G.
,
Apreda
,
R.
,
Dell’Orletta
,
F.
, and
Monge
,
M.
,
2013
, “
Automatic Extraction of Function–Behaviour–State Information From Patents
,”
Adv. Eng. Inform.
,
27
(
3
), pp.
317
334
.
38.
Li
,
Z.
,
Tate
,
D.
,
Lane
,
C.
, and
Adams
,
C.
,
2012
, “
A Framework for Automatic TRIZ Level of Invention Estimation of Patents Using Natural Language Processing, Knowledge-Transfer and Patent Citation Metrics
,”
Comput. Aided Des.
,
44
(
10
), pp.
987
1010
.
39.
Liang
,
Y.
,
Liu
,
Y.
,
Kwong
,
C. K.
, and
Lee
,
W. B.
,
2012
, “
Learning the ‘Whys’: Discovering Design Rationale Using Text Mining—An Algorithm Perspective
,”
Comput. Aided Des.
,
44
(
10
), pp.
916
930
.
40.
Liu
,
Y.
,
Liang
,
Y.
,
Kwong
,
C. K.
, and
Lee
,
W. B.
,
2010
, “
A New Design Rationale Representation Model for Rationale Mining
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031009
.
41.
Yamamoto
,
E.
,
Taura
,
T.
,
Ohashi
,
S.
, and
Yamamoto
,
M.
,
2010
, “
A Method for Function Dividing in Conceptual Design by Focusing on Linguistic Hierarchal Relations
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031004
.
42.
Cascini
,
G.
, and
Russo
,
D.
,
2007
, “
Computer-Aided Analysis of Patents and Search for TRIZ Contradictions
,”
Int. J. Prod. Dev.
,
4
(
1
), pp.
52
67
.
43.
Smojver
,
V.
,
Potočki
,
E.
, and
Štorga
,
M.
,
2017
, “
A Visual Analysis of Technical Knowledge Evolution Based on Patent Data
,”
International Conference on Engineering Design (ICED17)
,
Vancouver, Canada
,
Aug. 21–25
, pp.
307
316
.
44.
Chiarello
,
F.
,
Cirri
,
I.
,
Melluso
,
N.
,
Fantoni
,
G.
,
Bonaccorsi
,
A.
, and
Pavanello
,
T.
,
2019
, “
Approaches to Automatically Extract Affordances From Patents
,”
International Conference on Engineering Design (ICED19)
,
Delft, The Netherlands
,
Aug. 5–8
, pp.
2487
2496
.
45.
Jiang
,
P.
,
Atherton
,
M.
, and
Sorce
,
S.
,
2021
, “
Automated Functional Analysis of Patents for Producing Design Insight
,”
International Conference on Engineering Design (ICED21)
,
Gothenburg, Sweden
,
Aug. 16–20
, pp.
541
550
.
46.
Chang
,
H. T.
,
Chang
,
C. Y.
, and
Yang
,
Y. P.
,
2013
, “
Combining Surveying Patent Information, Reappearing Problem and Discovering Breakthrough for Design-Around
,”
International Conference on Engineering Design (ICED13)
,
Seoul, South Korea
,
Aug. 19–22
, pp.
417
426
.
47.
Bonaccorsi
,
A.
, and
Fantoni
,
G.
,
2007
, “
Expanding the Functional Ontology in Conceptual Design
,”
International Conference on Engineering Design (ICED07)
,
Paris, France
,
Aug. 28–31
, pp.
1
12
.
48.
Jiang
,
P.
,
Atherton
,
M.
,
Harrison
,
D.
, and
Malizia
,
A.
,
2017
, “
Framework of Mechanical Design Knowledge Representations for Avoiding Patent Infringement
,”
International Conference on Engineering Design (ICED17)
,
Vancouver, Canada
,
Aug. 21–25
, pp.
81
90
.
49.
Chiarello
,
F.
,
Fantoni
,
G.
, and
Bonaccorsi
,
A.
,
2017
, “
Product Description in Terms of Advantages and Drawbacks: Exploiting Patent Information in Novel Ways
,”
International Conference on Engineering Design (ICED17)
,
Vancouver, Canada
,
Aug. 21–25
, pp.
101
110
.
50.
Russo
,
D.
, and
Montecchi
,
T.
,
2011
, “
A Function-Behaviour Oriented Search for Patent Digging
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2011)
,
Washington, DC
,
Aug. 28–31
, pp.
1111
1120
.
51.
Sanaei
,
R.
,
Lu
,
W.
,
Blessing
,
L. T. M.
,
Otto
,
K. N.
, and
Wood
,
K. L.
,
2017
, “
Analogy Retrieval Through Textual Inference
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2017)
,
Cleveland, OH
,
Aug. 6–9
, Paper No.
V02AT03A007
.
52.
Li
,
Z.
, and
Tate
,
D.
,
2013
, “
Interpreting Design Structure in Patents Using an Ontology Library
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2013)
, Paper No.
V005T06A004
.
53.
Srinivasan
,
V.
,
Song
,
B.
,
Luo
,
J.
,
Subburaj
,
K.
,
Elara
,
M. R.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Does Analogical Distance Affect Performance of Ideation?
,”
ASME J. Mech. Des.
,
140
(
7
), p.
071101
.
54.
Luo
,
J.
,
Song
,
B.
,
Blessing
,
L.
, and
Wood
,
K.
,
2018
, “
Design Opportunity Conception Using the Total Technology Space Map
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
449
461
.
55.
Luo
,
J.
,
Yan
,
B.
, and
Wood
,
K.
,
2017
, “
InnoGPS for Data-Driven Exploration of Design Opportunities and Directions: The Case of Google Driverless Car Project
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111416
.
56.
Song
,
B.
,
Srinivasan
,
V.
, and
Luo
,
J.
,
2017
, “
Patent Stimuli Search and Its Influence on Ideation Outcomes
,”
Des. Sci.
,
3
(
e25
), pp.
1
25
.
57.
He
,
Y.
, and
Luo
,
J.
,
2017
, “
The Novelty ‘Sweet Spot’of Invention
,”
Des. Sci.
,
3
(
e21
), pp.
1
22
.
58.
Rios-Zapata
,
D.
,
Duarte
,
R.
,
Pailhès
,
J.
,
Mejia-Gutiérrez
,
R.
, and
Mesnard
,
M.
,
2017
, “
Patent-Based Creativity Method for Early Design Stages: Case Study in Locking Systems for Medical Applications
,”
Int. J. Interact. Des. Manuf.
,
11
(
3
), pp.
689
701
.
59.
Koh
,
E. C. Y.
,
2020
, “
Read the Full Patent or Just the Claims? Mitigating Design Fixation and Design Distraction When Reviewing Patent Documents
,”
Des. Stud.
,
68
, pp.
34
57
.
60.
Siddharth
,
L.
,
Madhusudanan
,
N.
, and
Chakrabarti
,
A.
,
2020
, “
Toward Automatically Assessing the Novelty of Engineering Design Solutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011001
.
61.
Saliminamin
,
S.
,
Becattini
,
N.
, and
Cascini
,
G.
,
2019
, “
Sources of Creativity Stimulation for Designing the Next Generation of Technical Systems: Correlations With R&D Designers’ Performance
,”
Res. Eng. Des.
,
30
(
1
), pp.
133
153
.
62.
Koh
,
E. C. Y.
, and
De Lessio
,
M. P.
,
2018
, “
Fixation and Distraction in Creative Design: The Repercussions of Reviewing Patent Documents to Avoid Infringement
,”
Res. Eng. Des.
,
29
(
3
), pp.
351
366
.
63.
Wodehouse
,
A.
,
Vasantha
,
G.
,
Corney
,
J.
,
Jagadeesan
,
A.
, and
MacLachlan
,
R.
,
2018
, “
Realising the Affective Potential of Patents: A New Model of Database Interpretation for User-Centred Design
,”
Res. Eng. Des.
,
29
(
8–9
), pp.
484
511
.
64.
Hwang
,
D.
, and
Park
,
W.
,
2018
, “
Design Heuristics Set for X: A Design Aid for Assistive Product Concept Generation
,”
Des. Stud.
,
58
, pp.
89
126
.
65.
Siddharth
,
L.
, and
Chakrabarti
,
A.
,
2018
, “
Evaluating the Impact of Idea-Inspire 4.0 on Analogical Transfer of Concepts
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
4
), pp.
431
448
.
66.
Kokshagina
,
O.
,
Le Masson
,
P.
, and
Weil
,
B.
,
2017
, “
Should We Manage the Process of Inventing? Designing for Patentability
,”
Res. Eng. Des.
,
28
(
4
), pp.
457
475
.
67.
Valverde
,
U. Y.
,
Nadeau
,
J.-P.
, and
Scaravetti
,
D.
,
2017
, “
A New Method for Extracting Knowledge From Patents to Inspire Designers During the Problem-Solving Phase
,”
J. Eng. Des.
,
28
(
6
), pp.
369
407
.
68.
Wodehouse
,
A.
,
Vasantha
,
G.
,
Corney
,
J.
,
Maclachlan
,
R.
, and
Jagadeesan
,
A.
,
2017
, “
The Generation of Problem-Focussed Patent Clusters: A Comparative Analysis of Crowd Intelligence With Algorithmic and Expert Approaches
,”
Des. Sci.
,
3
(
e16
), pp.
1
31
.
69.
McCaffrey
,
T.
, and
Spector
,
L.
,
2018
, “
An Approach to Human–Machine Collaboration in Innovation
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
1
), pp.
1
15
.
70.
Li
,
M.
,
Ming
,
X.
,
He
,
L.
,
Zheng
,
M.
, and
Xu
,
Z.
,
2015
, “
A TRIZ-Based Trimming Method for Patent Design Around
,”
Comput. Aided Des.
,
62
, pp.
20
30
.
71.
Koh
,
E. C. Y.
,
2013
, “
Engineering Design and Intellectual Property: Where Do They Meet?
,”
Res. Eng. Des.
,
24
(
4
), pp.
325
329
.
72.
Linsey
,
J. S.
,
Markman
,
A. B.
, and
Wood
,
K. L.
,
2012
, “
Design by Analogy: A Study of the WordTree Method for Problem Re-Representation
,”
ASME J. Mech. Des.
,
134
(
4
), p.
041009
.
73.
Chan
,
J.
,
Fu
,
K.
,
Schunn
,
C.
,
Cagan
,
J.
,
Wood
,
K.
, and
Kotovsky
,
K.
,
2011
, “
On the Benefits and Pitfalls of Analogies for Innovative Design: Ideation Performance Based on Analogical Distance, Commonness, and Modality of Examples
,”
ASME J. Mech. Des.
,
133
(
8
), p.
081004
.
74.
Fitzgerald
,
D. P.
,
Herrmann
,
J. W.
, and
Schmidt
,
L. C.
,
2010
, “
A Conceptual Design Tool for Resolving Conflicts Between Product Functionality and Environmental Impact
,”
ASME J. Mech. Des.
,
132
(
9
), p.
091006
.
75.
Weaver
,
J.
,
Wood
,
K.
,
Crawford
,
R.
, and
Jensen
,
D.
,
2010
, “
Transformation Design Theory: A Meta-Analogical Framework
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
031012
.
76.
Singh
,
V.
,
Skiles
,
S. M.
,
Krager
,
J. E.
,
Wood
,
K. L.
,
Jensen
,
D.
, and
Sierakowski
,
R.
,
2009
, “
Innovations in Design Through Transformation: A Fundamental Study of Transformation Principles
,”
ASME J. Mech. Des.
,
131
(
8
), p.
081010
.
77.
Koza
,
J. R.
,
2008
, “
Human-Competitive Machine Invention by Means of Genetic Programming
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
22
(
3
), pp.
185
193
.
78.
Jugulum
,
R.
, and
Frey
,
D. D.
,
2007
, “
Toward a Taxonomy of Concept Designs for Improved Robustness
,”
J. Eng. Des.
,
18
(
2
), pp.
139
156
.
79.
Busby
,
J. A.
, and
Lloyd
,
P. A.
,
1999
, “
Influences on Solution Search Processes in Design Organisations
,”
Res. Eng. Des.
,
11
(
3
), pp.
158
171
.
80.
Hsu
,
Y. L.
,
Hsu
,
P. E.
,
Hung
,
Y. C.
, and
Xiao
,
Y. D.
,
2010
, “
Development and Application of a Patent-Based Design Around Process
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2010)
,
Montreal, Quebec, Canada
,
Aug. 15–18
, pp.
91
100
.
81.
Qureshi
,
A.
,
Murphy
,
J. T.
,
Kuchinsky
,
B.
,
Seepersad
,
C. C.
,
Wood
,
K. L.
, and
Jensen
,
D. D.
,
2006
, “
Principles of Product Flexibility
,”
ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC/CIE 2006)
,
Philadelphia, PA, USA
,
Sept. 10–13
, pp.
295
325
.
82.
Parvin
,
M.
,
Cascini
,
G.
, and
Becattini
,
N.
,
2017
, “
Information Extracted From Patents As Creative Stimuli for Product Innovation
,”
International Conference on Engineering Design (ICED17)
,
Vancouver, Canada
,
Aug. 21–25
, pp.
297
306
.
83.
Lupu
,
M.
,
Fujii
,
A.
,
Oard
,
D. W.
,
Iwayama
,
M.
, and
Kando
,
N.
,
2017
, “Patent-Related Tasks at NTCIR,”
Current Challenges in Patent Information Retrieval
,
Springer
,
New York
, pp.
77
111
.
84.
Piroi
,
F.
, and
Hanbury
,
A.
,
2017
, “Evaluating Information Retrieval Systems on European Patent Data: The CLEF-IP Campaign,”
Current Challenges in Patent Information Retrieval
,
Springer
,
New York
, pp.
113
142
.
85.
Campbell
,
M. I.
,
Hölttä-Otto
,
K.
, and
Linsey
,
J.
,
2016
, “Special Issue on Design Theory and Methodology,”
ASME J. Mech. Des.
,
138
(
10
), p.
100301
.
86.
Goel
,
A. K.
, and
de Silva Garza
,
A. G.
,
2010
, “
Special Issue on Artificial Intelligence in Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
10
(
3
), p.
030301
.
87.
Allison
,
J. T.
,
Cardin
,
M.-A.
,
McComb
,
C.
,
Ren
,
M. Y.
,
Selva
,
D.
,
Tucker
,
C.
,
Witherell
,
P.
, and
Zhao
,
Y. F.
,
2022
, “
Special Issue on Artificial Intelligence and Engineering Design
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020301
.
88.
Spillers
,
W. R.
, and
Newsome
,
S. L.
,
1993
, “Engineering Design, Conceptual Design, and Design Theory: A Report,”
Design Methodology and Relationships With Science
,
Springer
,
New York
, pp.
103
120
.
89.
Chiarello
,
F.
,
Belingheri
,
P.
, and
Fantoni
,
G.
,
2021
, “Data Science for Engineering Design: State of the Art and Future Directions,”
Comput. Ind.
,
129
, p.
103447
.
90.
Luo
,
J.
,
Sarica
,
S.
, and
Wood
,
K. L.
,
2019
, “
Computer-Aided Design Ideation Using InnoGPS
,”
ASME 2019 IDETC/CIE
,
Anaheim, CA
,
Aug. 18–21
,
p. V02AT03A011
.
91.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Mining Process Heuristics From Designer Action Data Via Hidden Markov Models
,”
ASME J. Mech. Des.
,
139
(
11
), p.
111412
.
92.
Chandrasekaran
,
B.
,
1990
, “
Design Problem Solving: A Task Analysis
,”
AI Mag.
,
11
(
4
), pp.
59
71
.
93.
Luo
,
J.
,
2015
, “
The United Innovation Process: Integrating Science, Design, and Entrepreneurship As Sub-Processes
,”
Des. Sci.
,
1
(
e2
), pp.
1
29
.
94.
Jiang
,
S.
,
Hu
,
J.
,
Wood
,
K. L.
, and
Luo
,
J.
,
2022
, “
Data-Driven Design-By-Analogy: State-of-the-Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020801
.
95.
Qian
,
L.
, and
Gero
,
J. S.
,
1996
, “
Function-Behavior-Structure Paths and Their Role in Analogy-Based Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
10
(
4
), pp.
289
312
.
96.
Mccaffrey
,
A.
,
2016
, “
Analogy Finder
,” U.S. Patent No. US 9,501,469.
97.
Chakrabarti
,
A.
,
Sarkar
,
P.
,
Leelavathamma
,
B.
, and
Nataraju
,
B. S.
,
2005
, “
A Functional Representation for Aiding Biomimetic and Artificial Inspiration of New Ideas
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
19
(
2
), pp.
113
132
.
98.
Sarica
,
S.
, and
Luo
,
J.
,
2021
, “
Design Knowledge Representation With Technology Semantic Network
,”
Proceedings of the Design Society: International Conference on Engineering Design (ICED)
,
Gothenburg, Sweden
,
Aug. 16–20
, pp.
1043
1052
.
99.
Han
,
J.
,
Forbes
,
H.
,
Shi
,
F.
,
Hao
,
J.
, and
Schaefer
,
D.
,
2020
, “
A Data-Driven Approach for Creative Concept Generation and Evaluation
,”
Proceedings of the Design Society: DESIGN Conference (DESIGN 2020)
,
Online
,
Oct. 26–29
, pp.
167
176
.
100.
Han
,
J.
,
Sarica
,
S.
,
Shi
,
F.
, and
Luo
,
J.
,
2022
, “
Semantic Networks for Engineering Design: State of the Art and Future Directions
,”
ASME J. Mech. Des.
,
144
(
2
), p.
020802
.
101.
Choi
,
S.
,
Lee
,
H.
,
Park
,
E.
, and
Choi
,
S.
,
2022
, “
Deep Learning for Patent Landscaping Using Transformer and Graph Embedding
,”
Technol. Forecast. Soc. Change
,
175
, p.
121413
.
102.
Risch
,
J.
,
Alder
,
N.
,
Hewel
,
C.
, and
Krestel
,
R.
,
2021
, “
PatentMatch: A Dataset for Matching Patent Claims & Prior Art
,”
Proceedings of the 44th International ACM SIGIR Conference, the Second Workshop on Patent Text Mining and Semantic Technologies (PatentSemTech)
,
Online
,
July 15
, pp.
1
5
.
103.
Risch
,
J.
,
Garda
,
S.
, and
Krestel
,
R.
,
2020
, “
Hierarchical Document Classification As a Sequence Generation Task
,”
Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020
,
Online
,
Aug. 1–5
, pp.
147
155
.
104.
Lyu
,
L.
, and
Han
,
T.
,
2019
, “
A Comparative Study of Chinese Patent Literature Automatic Classification Based on Deep Learning
,”
2019 ACM/IEEE Joint Conference on Digital Libraries (JCDL)
,
Champaign, IL
,
June 2–6
, pp.
345
346
.
105.
Shalaby
,
M.
,
Stutzki
,
J.
,
Schubert
,
M.
, and
Günnemann
,
S.
,
2018
, “
An LSTM Approach to Patent Classification Based on Fixed Hierarchy Vectors
,”
Proceedings of the 2018 SIAM International Conference on Data Mining
,
San Diego, CA
,
May 3–5
, pp.
495
503
.
106.
Qi
,
J.
,
Lei
,
L.
,
Zheng
,
K.
, and
Wang
,
X.
,
2020
, “
Patent Analytic Citation-Based VSM: Challenges and Applications
,”
IEEE Access
,
8
, pp.
17464
17476
.
107.
Lin
,
H.
,
Wang
,
H.
,
Du
,
D.
,
Wu
,
H.
,
Chang
,
B.
, and
Chen
,
E.
,
2018
, “
Patent Quality Valuation With Deep Learning Models
,”
International Conference on Database Systems for Advanced Applications
,
Gold Coast, QLD, Australia
,
May 21–24
, pp.
474
490
.
108.
Bhattarai
,
M.
,
Oyen
,
D.
,
Castorena
,
J.
,
Yang
,
L.
, and
Wohlberg
,
B.
,
2020
, “
Diagram Image Retrieval Using Sketch-Based Deep Learning and Transfer Learning
,”
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
,
Seattle, WA
,
June 14–19
, pp.
663
672
.
109.
Chen
,
L.
,
Xu
,
S.
,
Zhu
,
L.
,
Zhang
,
J.
,
Lei
,
X.
, and
Yang
,
G.
,
2020
, “
A Deep Learning Based Method for Extracting Semantic Information From Patent Documents
,”
Scientometrics
,
125
(
1
), pp.
289
312
.
110.
Zuo
,
H.
,
Yin
,
Y.
, and
Childs
,
P.
,
2022
, “
Patent-KG: Patent Knowledge Graph Extraction for Engineering Design
,”
International Design Conference (DESIGN 2022)
,
Online
,
May 23–26
, pp.
821
830
.
111.
Zhang
,
Z.
,
Cui
,
P.
, and
Zhu
,
W.
,
2022
, “
Deep Learning on Graphs: A Survey
,”
IEEE Trans. Knowl. Data Eng.
,
34
(
1
), pp.
249
270
.
112.
Gao
,
J.
,
Li
,
P.
,
Chen
,
Z.
, and
Zhang
,
J.
,
2020
, “
A Survey on Deep Learning for Multimodal Data Fusion
,”
Neural Comput.
,
32
(
5
), pp.
829
864
.
113.
Rezende
,
D. J.
,
Mohamed
,
S.
, and
Wierstra
,
D.
,
2014
, “
Stochastic Backpropagation and Approximate Inference in Deep Generative Models
,”
Proceedings of the 31st International Conference on Machine Learning (ICML)
,
Beijing, China
,
June 21–26
, pp.
1278
1286
.
114.
Goodfellow
,
I.
,
Pouget-Abadie
,
J.
,
Mirza
,
M.
,
Xu
,
B.
,
Warde-Farley
,
D.
,
Ozair
,
S.
,
Courville
,
A.
, and
Bengio
,
Y.
,
2014
, “
Generative Adversarial Nets
,”
Proceedings of the 27th Conference on Neural Information Processing Systems (NIPS)
,
Montreal, Quebec, Canada
,
Dec. 8–13
, pp.
2672
2680
.
115.
Brown
,
T. B.
,
Mann
,
B.
,
Ryder
,
N.
,
Subbiah
,
M.
,
Kaplan
,
J.
,
Dhariwal
,
P.
,
Neelakantan
,
A.
,
Shyam
,
P.
,
Sastry
,
G.
, and
Askell
,
A.
,
2020
, “
Language Models Are Few-Shot Learners
,”
The Proceedings of 33th Conference on Neural Information Processing Systems (NeurIPS)
,
Virtual
,
Dec. 7–12
, pp.
1877
1901
.
116.
Devlin
,
J.
,
Chang
,
M.-W.
,
Lee
,
K.
, and
Toutanova
,
K.
,
2019
, “
BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
,”
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT)
,
Minneapolis, MN
,
June 2–7
, pp.
4171
4186
.
117.
Regenwetter
,
L.
,
Nobari
,
A. H.
, and
Ahmed
,
F.
,
2021
, “
Deep Generative Models in Engineering Design: A Review
,” arXiv preprint arXiv:2110.10863.
118.
Zhu
,
Q.
, and
Luo
,
J.
,
2022
, “
Generative Design Ideation: A Natural Language Generation Approach
,”
Design Computing and Cognition
,
Glasgow, UK
,
July 4–6
.
119.
Arrieta
,
A. B.
,
Díaz-Rodríguezb
,
N.
,
Del Ser
,
J.
,
Bennetot
,
A.
,
Tabik
,
S.
,
Barbado
,
A.
,
Garcia
,
S.
,
Gil-López
,
S.
,
Molina
,
D.
, and
Benjamins
,
R.
,
2020
, “
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges Toward Responsible AI
,”
Inf. Fusion
,
58
, pp.
82
115
.
120.
Liu
,
Q.
, and
Wong
,
K. P.
,
2011
, “
Intellectual Capital and Financing Decisions: Evidence From the US Patent Data
,”
Manage. Sci.
,
57
(
10
), pp.
1861
1878
.
121.
Hegde
,
D.
, and
Luo
,
H.
,
2018
, “
Patent Publication and the Market for Ideas
,”
Manage. Sci.
,
64
(
2
), pp.
652
672
.
122.
Wu
,
L.
,
Hitt
,
L.
, and
Lou
,
B.
,
2020
, “
Data Analytics, Innovation, and Firm Productivity
,”
Manage. Sci.
,
66
(
5
), pp.
2017
2039
.
123.
Bakker
,
J.
,
2017
, “
The Log-Linear Relation Between Patent Citations and Patent Value
,”
Scientometrics
,
110
(
2
), pp.
879
892
.
124.
Bass
,
S.
, and
Kurgan
,
L.
,
2010
, “
Discovery of Factors Influencing Patent Value Based on Machine Learning in Patents in the Field of Nanotechnology
,”
Scientometrics
,
82
(
2
), pp.
217
241
.
125.
Du
,
W.
,
Wang
,
Y.
,
Xu
,
W.
, and
Ma
,
J.
,
2021
, “
A Personalized Recommendation System for High-Quality Patent Trading by Leveraging Hybrid Patent Analysis
,”
Scientometrics
,
126
(
12
), pp.
9369
9391
.
126.
Chan
,
T. H.
,
Mihm
,
J.
, and
Sosa
,
M. E.
,
2018
, “
On Styles in Product Design: An Analysis of US Design Patents
,”
Manage. Sci.
,
64
(
3
), pp.
1230
1249
.
127.
Huenteler
,
J.
,
Ossenbrink
,
J.
,
Schmidt
,
T. S.
, and
Hoffmann
,
V. H.
,
2016
, “
How a Product’s Design Hierarchy Shapes the Evolution of Technological Knowledge—Evidence From Patent-Citation Networks in Wind Power
,”
Res. Policy
,
45
(
6
), pp.
1195
1217
.
128.
Lee
,
J.-S.
, and
Hsiang
,
J.
,
2020
, “
Patent Claim Generation by Fine-Tuning OpenAI GPT-2
,”
World Pat. Inf.
,
62
, p.
101983
.
129.
Parraguez
,
P.
, and
Maier
,
A.
,
2017
, “
Data-Driven Engineering Design Research: Opportunities Using Open Data
,”
Proceedings of the 21st International Conference on Engineering Design (ICED 17)
,
Vancouver, Canada
,
Aug. 21–25
, pp.
41
50
.
130.
Lee
,
K.
, and
Lee
,
J.
,
2021
, “National Innovation Systems, Economic Complexity, and Economic Growth: Country Panel Analysis Using the US Patent Data,”
Innovation, Catch-up and Sustainable Development
,
Springer
,
New York
, pp.
113
151
.
131.
Aristodemou
,
L.
, and
Tietze
,
F.
,
2018
, “
The State-of-the-Art on Intellectual Property Analytics (IPA): A Literature Review on Artificial Intelligence, Machine Learning and Deep Learning Methods for Analysing Intellectual Property (IP) Data
,”
World Pat. Inf.
,
55
, pp.
37
51
.
132.
Shalaby
,
W.
, and
Zadrozny
,
W.
,
2019
, “
Patent Retrieval : A Literature Review
,”
Knowl. Inf. Syst.
,
61
(
2
), pp.
631
660
.
133.
Krestel
,
R.
,
Chikkamath
,
R.
,
Hewel
,
C.
, and
Risch
,
J.
,
2021
, “
A Survey on Deep Learning for Patent Analysis
,”
World Pat. Inf.
,
65
, p.
102035
.
134.
Fleming
,
N.
,
2018
, “
How Artificial Intelligence Is Changing Drug Discovery
,”
Nature
,
557
(
7706
), pp.
S55
S57
.
135.
Teng
,
F.
,
Sun
,
Y.
,
Chen
,
F.
,
Qin
,
A.
, and
Zhang
,
Q.
,
2021
, “
Technology Opportunity Discovery of Proton Exchange Membrane Fuel Cells Based on Generative Topographic Mapping
,”
Technol. Forecast. Soc. Change
,
169
, p.
120859
.
You do not currently have access to this content.