Abstract

The technologies related to manufacturing processes monitoring, optimization, and control are becoming prevalent to achieve autonomous operations in Smart Manufacturing. The present work establishes an edge-level system based on the long short-term memory (LSTM) model for monitoring significant variations of cutting depths during end milling of near-net-shaped components. The proposed system consists of a trained LSTM model that decodes force data to identify cutting depths and an edge-level interface for displaying abnormal changes to the operator. The LSTM model development requires considerable labeled data consisting of cutting force sequences and corresponding depth classes generated using machining experiments. The present work proposes to develop the LSTM model using synthetic datasets generated using the mechanistic force model to minimize experimental efforts. The optimum configuration was derived by investigating the effect of network parameters and adaptive learning methods. The performance of an optimal network was substantiated by conducting tests using previously unseen synthetic datasets derived from the mechanistic model. The optimal network architecture was integrated with a dynamometer and an edge-level system to capture end milling force data and display cutting depth information. A set of end milling experiments are carried over a range of parameters to examine the efficacy of the proposed approach in estimating cutting depth deviations. It has been demonstrated that the approach can be effectively used as an edge-level system to capture significant cutting depth variations during the end milling and alert machine operators.

References

1.
Marini
,
D.
,
Cunningham
,
D.
, and
Corney
,
J. R.
,
2017
, “
Near Net Shape Manufacturing of Metal: A Review of Approaches and Their Evolutions
,”
Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf.
,
232
(
4
), pp.
650
669
.
2.
Syafrudin
,
M.
,
Alfian
,
G.
,
Fitriyani
,
N. L.
, and
Rhee
,
J.
,
2018
, “
Performance Analysis of IoT-Based Sensor, Big Data Processing, and Machine Learning Model for Real-Time Monitoring System in Automotive Manufacturing
,”
Sensors
,
18
(
9
), p.
2946
.
3.
Zhang
,
J.
,
Wang
,
P.
,
Yan
,
R.
, and
Gao
,
R. X.
,
2018
, “
Long Short-Term Memory for Machine Remaining Life Prediction
,”
J. Manuf. Syst.
,
48
(
C
), pp.
78
86
.
4.
Wu
,
D.
,
Jennings
,
C.
,
Terpenny
,
J.
,
Gao
,
R. X.
, and
Kumara
,
S.
,
2017
, “
A Comparative Study on Machine Learning Algorithms for Smart Manufacturing: Tool Wear Prediction Using Random Forests
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071018
.
5.
Wang
,
J.
,
Xie
,
J.
,
Zhao
,
R.
,
Zhang
,
L.
, and
Duan
,
L.
,
2017
, “
Multisensory Fusion Based Virtual Tool Wear Sensing for Ubiquitous Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
45
, pp.
47
58
.
6.
Li
,
Y.
,
Liu
,
C.
,
Hua
,
J.
,
Gao
,
J.
, and
Maropoulos
,
P.
,
2019
, “
A Novel Method for Accurately Monitoring and Predicting Tool Wear Under Varying Cutting Conditions Based on Meta-Learning
,”
CIRP Ann.
,
68
(
1
), pp.
487
490
.
7.
Sun
,
H.
,
Zhang
,
J.
,
Mo
,
R.
, and
Zhang
,
X.
,
2020
, “
In-Process Tool Condition Forecasting Based on a Deep Learning Method
,”
Rob. Comput. Integr. Manuf.
,
64
, p.
101924
.
8.
He
,
Z.
,
Shi
,
T.
,
Xuan
,
J.
, and
Li
,
T.
,
2021
, “
Research on Tool Wear Prediction Based on Temperature Signals and Deep Learning
,”
Wear
,
478–479
, p.
203902
.
9.
Wang
,
J.
,
Li
,
Y.
,
Zhao
,
R.
, and
Gao
,
R. X.
,
2020
, “
Physics Guided Neural Network for Machining Tool Wear Prediction
,”
J. Manuf. Syst.
,
57
, pp.
298
310
.
10.
Vashisht
,
R. K.
, and
Peng
,
Q.
,
2020
, “
Online Chatter Detection for Milling Operations Using LSTM Neural Networks Assisted by Motor Current Signals of Ball Screw Drives
,”
ASME J. Manuf. Sci. Eng.
,
143
(
1
), p.
011008
.
11.
Thoppil
,
N. M.
,
Vasu
,
V.
, and
Rao
,
C. S. P.
,
2021
, “
Bayesian Optimization LSTM/Bi-LSTM Network With Self-Optimized Structure and Hyperparameters for Remaining Useful Life Estimation of Lathe Spindle Unit
,”
ASME J. Comput. Inf. Sci. Eng.
,
22
(
2
), p.
021012
.
12.
Friedrich
,
J.
,
Hinze
,
C.
,
Renner
,
A.
,
Verl
,
A.
, and
Lechler
,
A.
,
2017
, “
Estimation of Stability Lobe Diagrams in Milling With Continuous Learning Algorithms
,”
Rob. Comput. Integr. Manuf.
,
43
, pp.
124
134
.
13.
Kothuru
,
A.
,
Nooka
,
S. P.
, and
Liu
,
R.
,
2018
, “
Audio-Based Tool Condition Monitoring in Milling of the Workpiece Material With the Hardness Variation Using Support Vector Machines and Convolutional Neural Networks
,”
ASME J. Manuf. Sci. Eng.
,
140
(
11
), p.
111006
.
14.
Chiu
,
M. C.
,
De Tsai
,
C.
, and
Li
,
T. L.
,
2020
, “
An Integrative Machine Learning Method to Improve Fault Detection and Productivity Performance in a Cyber-Physical System
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021009
.
15.
Altintas
,
Y.
, and
Yellowley
,
I.
,
1987
, “
The Identification of Radial Width and Axial Depth of Cut in Peripheral Milling
,”
Int. J. Mach. Tools Manuf.
,
27
(
3
), pp.
367
381
.
16.
Choi
,
J.-G.
, and
Yang
,
M.-Y.
,
1999
, “
In-Process Prediction of Cutting Depths in End Milling
,”
Int. J. Mach. Tools Manuf.
,
39
(
5
), pp.
705
721
.
17.
Yang
,
L.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
Analysis of Force Shape Characteristics and Detection of Depth-of-Cut Variations in End Milling
,”
ASME J. Manuf. Sci. Eng.
,
127
(
3
), pp.
454
462
.
18.
Gaja
,
H.
, and
Liou
,
F.
,
2016
, “
Automatic Detection of Depth of Cut During End Milling Operation Using Acoustic Emission Sensor
,”
Int. J. Adv. Manuf. Technol.
,
86
(
9
), pp.
2913
2925
.
19.
Leal-Muñoz
,
E.
,
Diez
,
E.
,
Perez
,
H.
, and
Vizan
,
A.
,
2018
, “
Accuracy of a New Online Method for Measuring Machining Parameters in Milling
,”
Measurement
,
128
, pp.
170
179
.
20.
Shi
,
D. M.
,
Huang
,
T.
,
Zhang
,
X. M.
, and
Zhao
,
S.
,
2021
, “
Real-Time Monitoring of Depth of Cut in the Multi-Axis Milling Process With Ball-End Cutter
,”
Proc. CIRP
,
102
, pp.
287
292
.
21.
Deng
,
L.
, and
Yu
,
D.
,
2014
, “
Deep Learning: Methods and Applications
,”
Found. Trends Signal Process.
,
7
(
3–4
), pp.
197
387
.
22.
Aghazadeh
,
F.
,
Tahan
,
A.
, and
Thomas
,
M.
,
2018
, “
Tool Condition Monitoring Using Spectral Subtraction and Convolutional Neural Networks in Milling Process
,”
Int. J. Adv. Manuf. Technol.
,
98
(
9
), pp.
3217
3227
.
23.
Lin
,
W. J.
,
Lo
,
S. H.
,
Young
,
H. T.
, and
Hung
,
C. L.
,
2019
, “
Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction Using Vibration Signal Analysis
,”
Appl. Sci.
,
9
(
7
), p.
1462
.
24.
Zhang
,
X.
,
Han
,
C.
,
Luo
,
M.
, and
Zhang
,
D.
,
2020
, “
Tool Wear Monitoring for Complex Part Milling Based on Deep Learning
,”
Appl. Sci.
,
10
(
19
), p.
6916
.
25.
Sener
,
B.
,
Gudelek
,
M. U.
,
Ozbayoglu
,
A. M.
, and
Unver
,
H. O.
,
2021
, “
A Novel Chatter Detection Method for Milling Using Deep Convolution Neural Networks
,”
Measurement
,
182
, p.
109689
.
26.
Jia
,
Y.
,
Song
,
X.
,
Zhou
,
J.
,
Liu
,
L.
,
Nie
,
L.
, and
Rosenblum
,
D. S.
,
2016
, “
Fusing Social Networks With
,”
Thirtieth AAAI Conference on Artificial Intelligence
,
Phoenix, AZ
,
Feb. 12–17
.
27.
Sutskever
,
I.
,
Vinyals
,
O.
, and
Le
,
Q. V.
,
2014
, “
Sequence to Sequence Learning With Neural Networks
,”
Adv. Neural Inf. Process. Syst.
,
4
(
Jan.
), pp.
3104
3112
.
28.
Santhanam
,
S.
,
2020
, “
Context Based Text-Generation Using LSTM Networks
.”
arXiv preprint
https://arxiv.org/abs/2005.00048
29.
Graves
,
A.
,
Jaitly
,
N.
, and
Mohamed
,
A.
,
2013
, “
Hybrid Speech Recognition With Deep Bidirectional LSTM
,”
2013 IEEE Workshop on Automatic Speech Recognition and Understanding
,
Olomouc, Czech Republic
,
Dec. 8–12
, pp.
273
278
.
30.
Singh
,
S.
,
Pandey
,
S. K.
,
Pawar
,
U.
, and
Janghel
,
R. R.
,
2018
, “
Classification of ECG Arrhythmia Using Recurrent Neural Networks
,”
Procedia Comput. Sci.
,
132
, pp.
1290
1297
.
31.
Hoag
,
J.
,
2008
,
Synthetic Data Generation: Theory, Techniques and Applications
,
University of Arkansas
.
32.
Agarwal
,
A.
, and
Desai
,
K. A.
,
2020
, “
Importance of Bottom and Flank Edges in Force Models for Flat-End Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
107
(
3
), pp.
1437
1449
.
33.
Lakshminarayanan
,
S. K.
, and
McCrae
,
J.
,
2019
, “
A Comparative Study of SVM and LSTM Deep Learning Algorithms for Stock Market Prediction
,”
CEUR Workshop Proc.
,
2563
, pp.
446
457
.
34.
He
,
T.
,
Xie
,
C.
,
Liu
,
Q.
,
Guan
,
S.
, and
Liu
,
G.
,
2019
, “
Evaluation and Comparison of Random Forest and A-LSTM Networks for Large-Scale Winter Wheat Identification
,”
Remote Sens.
,
11
(
14
).
35.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
.
36.
Kingma
,
D. P.
, and
Ba
,
J. L.
,
2015
, “
Adam: A Method for Stochastic Optimization
,”
3rd International Conference For Learning Representations, ICLR 2015—Conference Track Proceedings
,
San Diego, CA
,
May 7–9
, pp.
1
15
.
37.
Heusel
,
M.
,
Ramsauer
,
H.
,
Unterthiner
,
T.
,
Nessler
,
B.
, and
Hochreiter
,
S.
,
2017
, “
GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium
,”
Advances in Neural Information Processing Systems, 2017-Decem (NIPS)
,
Long Beach, CA
,
Dec. 4–9
, pp.
6627
6638
.
38.
Dunne
,
R. A.
, and
Campbell
,
N. A.
,
1997
, “
On the Pairing of the Softmax Activation
,”
Proceedings of the 8th Australian Conference on the Neural Networks
,
Melbourne, Australia
,
June 11–13
, p.
185
.
39.
Zhang
,
Z.
, and
Sabuncu
,
M. R.
,
2018
, “
Generalized Cross Entropy Loss for Training Deep Neural Networks With Noisy Labels
,”
Advances in Neural Information Processing Systems, 2018-Decem (NeurIPS)
,
Montreal, Canada
,
Dec. 3–8
, pp.
8778
8788
.
40.
Murphy
,
K. P.
,
2012
,
Machine Learning: A Probabilistic Perspective
,
MIT Press
,
Cambridge, MA
.
41.
Mehta
,
P.
,
Kuttolamadom
,
M.
, and
Mears
,
L.
,
2017
, “
Mechanistic Force Model for Machining Process—Theory and Application of Bayesian Inference
,”
Int. J. Adv. Manuf. Technol.
,
91
(
9
), pp.
3673
3682
.
42.
Soni
,
D.
, and
Desai
,
K. A.
,
2020
, “
Gaussian Approach–Based Cutting Force Coefficient Identification for Flat-End Milling Operation
,”
Int. J. Adv. Manuf. Technol.
,
110
(
11
), pp.
3023
3034
.
43.
Trenn
,
S.
,
2008
, “
Multilayer Perceptrons: Approximation Order and Necessary Number of Hidden Units
,”
IEEE Trans. Neural Networks
,
19
(
5
), pp.
836
844
.
44.
Heaton
,
J.
,
2008
,
Introduction to Neural Networks for Java
, 2nd ed.,
Heaton Research, Inc
.
45.
Chang
,
Z.
,
Zhang
,
Y.
, and
Chen
,
W.
,
2019
, “
Effective Adam-Optimized LSTM Neural Network
,”
2018 IEEE 9th International Conference on Software Engineering and Service Science (ICSESS), 2018
,
Beijing, China
,
Nov. 23–25
, pp.
245
248
.
You do not currently have access to this content.