Abstract

Li-ion batteries have diversified applications in everyday life. The temperature change, overcharging and over-discharging, is playing critical roles in affecting battery life in a significant manner. In this paper, the deep learning-based method is applied for the prognostics of a single Li-ion battery. The proposed design uses a recurrent neural network variant, long–short-term memory. The model’s parameters are optimized through a genetic algorithm-based parameter selector. The method applies to a sequence of data values comprising of the voltage, the charge capacity, the current, and the temperature. The estimation of battery capacity is not only based on the current or defined state of battery, instead, it is generated on the complete data profile. The robustness of the model is tested by comparing it with techniques such as support vector regressor, Kalman filter, and neural networks on normal and noisy test sets. The paper also proposes a feature selection and engineering scheme for battery capacity prediction. The proposed model outperforms the techniques available in the literature with high generalization to noise and other perturbations. The model is independent of the section of the charging curve used for the prediction of battery capacity. Various experimentation has been conducted on the model and the results have been validated.

References

1.
WHO
,
2019
, “
Air Pollution and Climate Change
,”
February
.
2.
P. H. F. of India & Center for Environmental Health
,
2010
, “
Air Pollution and Health in India
,”
July
.
3.
Ehsani
,
M.
,
Gao
,
Y.
, and
Ebrahimi
,
M.
,
2010
, “
Modern Electric, Hybrid Electric, and Fuel Cell Vehicles
,” Boca Raton, FL,
January
,
4.
Dutta
,
P.
,
Boulanger
,
A.
,
Anderson
,
R.
, and
Wu
,
L.
,
2015
,
An Innovative Approach to Vehicle Electrification for Smart Cities
,
A.
Vesco
and
F.
Ferrero
, eds.,
IGI Global
,
Chicago, IL
, pp.
193
212
.
5.
Pramanik
,
P. K. D.
,
Sinhababu
,
N.
,
Mukherjee
,
B.
,
Padmanaban
,
S.
,
Maity
,
A.
,
Upadhyaya
,
B. K.
,
Holm-Nielsen
,
J. B.
, and
Choudhury
,
P.
,
2019
, “
Power Consumption Analysis, Measurement, Management, and Issues: A State-of-the-Art Review of Smartphone Battery and Energy Usage
,”
IEEE Access
,
7
(
1
), pp.
182113
182172
.
6.
Bach
,
T. C.
,
Schuster
,
S. F.
,
Fleder
,
E.
,
Müller
,
J.
,
Brand
,
M. J.
,
Lorrmann
,
H.
,
Jossen
,
A.
, and
Sextl
,
G.
,
2016
, “
Nonlinear Aging of Cylindrical Lithium-Ion Cells Linked to Heterogeneous Compression
,”
J. Energy Storage
,
5
(
3
), pp.
212
223
.
7.
Li
,
R.
,
Xu
,
S.
,
Li
,
S.
,
Zhou
,
Y.
,
Zhou
,
K.
,
Liu
,
X.
, and
Yao
,
J.
,
2020
, “
State of Charge Prediction Algorithm of Lithium-Ion Battery Based on PSO-SVR Cross Validation
,”
IEEE Access
,
8
(
1
), pp.
1
1
.
8.
Caliwag
,
A.
, and
Lim
,
W.
,
2019
, “
Hybrid Varma and LSTM Method for Lithium-Ion Battery State-of-Charge and Output Voltage Forecasting in Electric Motorcycle Applications
,”
IEEE Access
,
7
(
5
), pp.
59680
59689
.
9.
Yu
,
J.
,
Baohua
,
M.
,
Tang
,
D.
,
Yang
,
J.
,
Wan
,
J.
, and
Liu
,
J.
,
2017
, “
Indirect State-of-Health Estimation for Lithium-Ion Batteries Under Randomized Use
,”
Energies
,
10
(
12
), p.
2012
.
10.
Chang
,
W.-Y.
,
2013
, “
The State of Charge Estimating Methods for Battery: A Review
,
ISRN Appl. Math.
,
2013
.
11.
Zheng
,
F.
,
Xing
,
Y.
,
Jiang
,
J.
,
Sun
,
B.
,
Kim
,
J.
, and
Pecht
,
M.
,
2016
, “
Influence of Different Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries
,”
Appl. Energy
,
183
(
1
), pp.
513
525
.
12.
Li
,
Y.
,
Guo
,
H.
,
Qi
,
F.
,
Guo
,
Z.
, and
Li
,
M.
,
2020
, “
Comparative Study of the Influence of Open Circuit Voltage Tests on State of Charge Online Estimation for Lithium-Ion Batteries
,”
IEEE Access
,
8
(
17
), pp.
17535
17547
.
13.
Wang
,
L. Y.
,
Polis
,
M. P.
,
Yin
,
G. G.
,
Chen
,
W.
,
Fu
,
Y.
, and
Mi
,
C. C.
,
2012
, “
Battery Cell Identification and SOC Estimation Using String Terminal Voltage Measurements
,”
IEEE Trans. Veh. Technol.
,
61
(
7
), pp.
2925
2935
.
14.
Islam
,
S. M. R.
, and
Park
,
S.
,
2020
, “
Precise Online Electrochemical Impedance Spectroscopy Strategies for Li-Ion Batteries
,”
IEEE Trans. Ind. Appl.
,
56
(
2
), pp.
1661
1669
.
15.
Abu Qahouq
,
J. A.
,
2016
, “
Online Battery Impedance Spectrum Measurement Method
,”
2016 IEEE Applied Power Electronics Conference and Exposition (APEC)
,
Long Beach, CA
,
Mar. 24–26
, pp.
3611
3615
.
16.
Saji
,
D.
,
Babu
,
P. S.
, and
Ilango
,
K.
,
2019
, “
SOC Estimation of Lithium Ion Battery Using Combined Coulomb Counting and Fuzzy Logic Method
,”
2019 4th International Conference on Recent Trends on Electronics, Information, Communication Technology (RTEICT)
,
Bangalore, India
,
May 17–18
, pp.
948
952
.
17.
Guo
,
Y.
,
Zhao
,
Z.
, and
Huang
,
L.
,
2017
, “
SOC Estimation of Lithium Battery Based on Improved BP Neural Network
, ”
Energy Proc.
,
105
, pp.
4153
4158
(
8th International Conference on Applied Energy, ICAE 2016
,
Oct. 8–11, 2016
,
Beijing, China
).
18.
Chen
,
X.
,
Shen
,
W.
,
Dai
,
M.
,
Cao
,
Z.
,
Jin
,
J.
, and
Kapoor
,
A.
,
2016
, “
Robust Adaptive Sliding-Mode Observer Using RBF Neural Network for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles
,”
IEEE Trans. Veh. Technol.
,
65
(
4
), pp.
1936
1947
.
19.
Lee
,
Y.-S.
,
Kuo
,
T.-Y.
, and
Wang
,
W.-Y.
,
2004
, “
Fuzzy Neural Network Genetic Approach to Design the SOC Estimator for Battery Powered Electric Scooter
,”
2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No. 04CH37551)
,
4
, pp.
2759
2765
.
20.
Haoran
,
L.
,
Liangdong
,
L.
,
Xiaoyin
,
Z.
, and
Mingxuan
,
S.
,
2018
, “
Lithium Battery SOC Estimation Based on Extended Kalman Filtering Algorithm
,”
2018 IEEE 4th International Conference on Control Science and Systems Engineering (ICCSSE)
,
Wuhan, China
, pp.
231
235
.
21.
Jokić
,
I.
,
Zeěvić
,
Z.
, and
Krstajić
,
B.
,
2018
, “
State-of-Charge Estimation of Lithium-Ion Batteries Using Extended Kalman Filter and Unscented Kalman Filter
,”
2018 23rd International Scientific-Professional Conference on Information Technology (IT)
,
Zabljak, Montenegro
, pp.
1
4
.
22.
Xi
,
Z.
,
Dahmardeh
,
M.
,
Xia
,
B.
,
Fu
,
Y.
, and
Mi
,
C.
,
2019
, “
Learning of Battery Model Bias for Effective State of Charge Estimation of Lithium-Ion Batteries
,”
IEEE Trans. Veh. Technol.
,
68
(
9
), pp.
8613
8628
.
23.
Hannan
,
M. A.
,
Lipu
,
M. S. H.
,
Hussain
,
A.
,
Saad
,
M. H.
, and
Ayob
,
A.
,
2018
, “
Neural Network Approach for Estimating State of Charge of Lithium-Ion Battery Using Backtracking Search Algorithm
,”
IEEE Access
,
6
(
10
), pp.
10069
10079
.
24.
Hong
,
J.
,
Wang
,
Z.
,
Chen
,
W.
,
Wang
,
L.-Y.
, and
Qu
,
C.
,
2020
, “
Online Joint-Prediction of Multi-Forward-Step Battery SOC Using LSTM Neural Networks and Multiple Linear Regression for Real-World Electric Vehicles
,”
J. Energy Storage
,
30
(
1
), p.
101459
.
25.
Chemali
,
E.
,
Kollmeyer
,
P. J.
,
Preindl
,
M.
,
Ahmed
,
R.
, and
Emadi
,
A.
,
2018
, “
Long Short-Term Memory Networks for Accurate State-of-Charge Estimation of Li-Ion Batteries
,”
IEEE Trans. Ind. Electron.
,
65
(
8
), pp.
6730
6739
.
26.
Zhang
,
Q.
,
Liu
,
B.
,
Zhou
,
F.
,
Wang
,
Q.
, and
Kong
,
J.
,
2018
, “
State-of-Charge Estimation Method of Lithium-Ion Batteries Based on Long-Short Term Memory Network
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
208
(
1
), p.
012001
.
27.
Goncalves Vidal
,
C. J.
,
2020
, “
Deep Neural Networks for Improved Terminal Voltage and State-of-Charge Estimation of Lithium-Ion Batteries for Traction Applications
,” Open Access Dissertations and Theses, Mc Master University, Hamilton, Canada.
28.
Caliwag
,
A.
,
Muh
,
K. L.
,
Kang
,
S. H.
,
Park
,
J.
, and
Lim
,
W.
,
2020
, “
Design of Modular Battery Management System with Point-to-Point SoC Estimation Algorithm
,”
2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)
,
Tokyo, Japan
,
Feb. 19–21
.
29.
Jiani
,
D.
,
Zhitao
,
L.
,
Can
,
C.
, and
Youyi
,
W.
,
2012
, “
Li-Ion Battery SOC Estimation Using EKF Based on a Model Proposed by Extreme Learning Machine
,”
2012 7th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
Chicago, IL
, pp.
1651
1656
.
30.
Lin
,
C.
,
Tang
,
A.
, and
Wang
,
W.
,
2015
, “
A Review of SOH Estimation Methods in Lithium-Ion Batteries for Electric Vehicle Applications
,”
Energy Proc.
,
75
(
5
), pp.
1920
1925
.
31.
Kim
,
T.
,
Adhikaree
,
A.
,
Pandey
,
R.
,
Kang
,
D.
,
Kim
,
M.
,
Oh
,
C.
, and
Baek
,
J.
,
2019
, “
An On-board Model-Based Condition Monitoring for Lithium-Ion Batteries
,”
IEEE Trans. Ind. Appl.
,
55
(
2
), pp.
1835
1843
.
32.
Dai
,
H.
,
Zhao
,
G.
,
Lin
,
M.
,
Wu
,
J.
, and
Zheng
,
G.
,
2019
, “
A Novel Estimation Method for the State of Health of Lithium-Ion Battery Using Prior Knowledge-Based Neural Network and Markov Chain
,”
IEEE Trans. Ind. Electron.
,
66
(
10
), pp.
7706
7716
.
33.
Deng
,
Y.
,
Ying
,
H.
,
Zhu
,
J. E.
,
Wei
,
K.
,
Chen
,
J.
,
Zhang
,
F.
, and
Liao
,
G.
,
2019
, “
Feature Parameter Extraction and Intelligent Estimation of the State-of-Health of Lithium-Ion Batteries
,”
Energy
,
176
(
1
), pp.
91
102
.
34.
Severson
,
K. A.
, and
Attia
,
P. M.
,
2019
, “
Data-Driven Prediction of Battery Cycle Life Before Capacity Degradation
,”
Nat. Energy
,
4
(
5
), pp.
383
391
.
35.
Zhou
,
Y.
,
Gao
,
Y.
,
Huang
,
Y.
,
Hefenbrock
,
M.
,
Riedel
,
T.
, and
Beigl
,
M.
,
2020
, “
Automatic Remaining Useful Life Estimation Framework With Embedded Convolutional LSTM as the Backbone
,”
ArXiv
https://arxiv.org/abs/2008.03961. 10.1007/978-3-030-67667-4_28
36.
Hsu
,
C.
, and
Jiang
,
J.
,
2018
, “
Remaining Useful Life Estimation Using Long Short-Term Memory Deep Learning
,”
2018 IEEE International Conference on Applied System Invention (ICASI)
,
Chiba, Japan
.
37.
Hou
,
G.
,
Xu
,
S.
,
Zhou
,
N.
,
Yang
,
L.
, and
Fu
,
Q.
,
2020
, “
Remaining Useful Life Estimation Using Deep Convolutional Generative Adversarial Networks Based on an Autoencoder Scheme
,”
Comput. Intel. Neurosci.
,
2020
(
9
), p.
9601389
.
38.
Choi
,
Y.
,
Ryu
,
S.
,
Park
,
K.
, and
Kim
,
H.
,
2019
, “
Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles
,”
IEEE Access
,
7
(
75
), pp.
75143
75152
.
39.
Rashid
,
M.
, and
Gupta
,
A.
,
2015
, “
Effect of Relaxation Periods Over Cycling Performance of a Li-Ion Battery
,”
J. Electrochem. Soc.
,
162
(
1
), pp.
3145
3153
.
40.
Zhang
,
Y.
,
Xiong
,
R.
,
He
,
H.
, and
Liu
,
Z.
,
2017
, “
A LSTM-RNN Method for the Lithuim-Ion Battery Remaining Useful Life Prediction
,”
2017 Prognostics and System Health Management Conference (PHM-Harbin)
,
Harbin, China
, pp.
1
4
.
41.
El Maskaoui
,
Z.
,
2017
, “
Genetic Algorithm Parameters Effect on the Optimal Structural Design Search
,”
IOSR J. Mech. Civil Eng.
,
14
(
1
), p.
124
.
42.
Riedmiller
,
M.
, and
Braun
,
H.
,
1993
, “
A Direct Adaptive Method for Faster Backpropagation Learning: The Rprop Algorithm
,”
IEEE International Conference on Neural Networks
,
Glasgow, UK
.
43.
Choi
,
Y.
,
Ryu
,
S.
,
Park
,
K.
, and
Kim
,
H.
,
2019
, “
Machine Learning-Based Lithium-Ion Battery Capacity Estimation Exploiting Multi-Channel Charging Profiles
,”
IEEE Access
,
7
(
1
), pp.
75143
75152
.
44.
Chemali
,
E.
,
Kollmeyer
,
P.
,
Preindl
,
M.
, and
Emadi
,
A.
,
2018
, “
State-of-Charge Estimation of Li-Ion Batteries Using Deep Neural Networks: A Machine Learning Approach
,”
J. Power Sources
,
400
(
1
), pp.
242
255
.
45.
Han
,
X.
,
Feng
,
X.
,
Ouyang
,
M.
,
Lu
,
L.
,
Li
,
J.
,
Zheng
,
Y.
, and
Li
,
Z.
,
2019
, “
A Comparative Study of Charging Voltage Curve Analysis and State of Health Estimation of Lithium-Ion Batteries in Electric Vehicle
,”
Autom. Innov.
,
2
(
4
), pp.
263
275
.
46.
Saha
,
B.
, and
Goebel
,
K.
,
2007
, “
Battery Data Set
,” NASA Ames Prognostics Data Repository, NASA Ames Research Center, Moffett Field, CA.
47.
Shu, X., Shen, S., Shen, J., Zhang, Y., Li, G., Chen, Z., and Liu, Y.,
2021
, “
State of Health Prediction of Lithium-Ion Batteries Based on Machine Learning: Advances and Perspectives
,”
iScience
,
24
(
11
).
48.
Yu
,
Z.
,
Guo
,
Y.
, and
Wang
,
H.
,
2013
, “
Research on State of Charge Estimation of Li-Ion Battery Based on SCKF-STF
,”
Electric Mach. Control
,
17
(
1
), pp.
70
76
.
49.
Li
,
R.
,
Xu
,
S.
,
Li
,
S.
,
Zhou
,
Y.
,
Zhou
,
K.
,
Liu
,
X.
, and
Yao
,
J.
,
2020
, “
State of Charge Prediction Algorithm of Lithium-Ion Battery Based on PSO-SVR Cross Validation
,”
IEEE Access
,
8
(
10
), pp.
10234
10242
.
You do not currently have access to this content.