Abstract

Bi-level programming, where one objective is nested within the other, is widely used in engineering design, e.g., structural optimization and electronic system design. One major issue of current solvers for these bi-level problems is their low computational efficiency, especially for complex nonlinear problems. The existing methods usually applied time-consuming nested computational structure, which requires an amount of function evaluations (FEs) since a lower-level (LL) optimization needs to be constructed for each upper-level (UL) solution. To solve this issue, a new method based on bi-level grey wolf optimizer (BLGWO) is proposed in this paper. The basic idea is to drop the conventional nested computational structure and instead use a simultaneous computational structure. The simultaneous structure is built on top of a dominance determination process for the grey wolf optimizer, so that the upper-level and lower-level problems can be optimized simultaneously, which greatly improves the efficiency of solving the bi-level problems. The effectiveness of this new method has been validated with ten benchmark functions and two engineering design examples, as well as comparisons with three important existing methods in the bi-level programming domain.

References

1.
Saitou
,
K.
,
Izui
,
K.
,
Nishiwaki
,
S.
, and
Papalambros
,
P.
,
2005
, “
A Survey of Structural Optimization in Mechanical Product Development
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
214
226
.
2.
Umeozor
,
E. C.
, and
Trifkovic
,
M.
,
2016
, “
Operational Scheduling of Microgrids Via Parametric Programming
,”
Appl. Energy
,
180
, pp.
672
681
.
3.
Sinha
,
A.
,
Malo
,
P.
, and
Deb
,
K.
,
2018
, “
A Review on Bilevel Optimization: From Classical to Evolutionary Approaches and Applications
,”
IEEE Trans. Evol. Comput.
,
22
(
2
), pp.
276
295
.
4.
Vicente
,
L. N.
, and
Calamai
,
P. H.
,
1994
, “
Bilevel and Multilevel Programming: A Bibliography Review
,”
J. Glob. Optim.
,
5
(
3
), pp.
291
306
.
5.
Ye
,
J. J.
, and
Zhu
,
D. L.
,
1995
, “
Optimality Conditions for Bilevel Programming Problems
,”
Optimization
,
33
(
1
), pp.
9
27
.
6.
Colson
,
B.
,
Marcotte
,
P.
, and
Savard
,
G.
,
2007
, “
An Overview of Bilevel Optimization
,”
Ann. Oper. Res.
,
153
(
1
), pp.
235
256
.
7.
Sinha
,
A.
,
Malo
,
P.
, and
Deb
,
K.
,
2017
, “
Evolutionary Algorithm for Bilevel Optimization Using Approximations of the Lower Level Optimal Solution Mapping
,”
Eur. J. Oper. Res.
,
257
(
2
), pp.
395
411
.
8.
Bard
,
J. F.
, and
Falk
,
J. E.
,
1982
, “
An Explicit Solution to the Multi-Level Programming Problem
,”
Comput. Oper. Res.
,
9
(
1
), pp.
77
100
(in English).
9.
Liu
,
S.
,
Wang
,
M.
,
Kong
,
N.
, and
Hu
,
X.
,
2021
, “
An Enhanced Branch-and-Bound Algorithm for Bilevel Integer Linear Programming
,”
Eur. J. Oper. Res.
,
291
(
2
), pp.
661
679
.
10.
Kolstad
,
C. D.
, and
Lasdon
,
L. S.
,
1990
, “
Derivative Evaluation and Computational Experience With Large Bilevel Mathematical Programs
,”
J. Optim. Theory Appl.
,
65
(
3
), pp.
485
499
.
11.
Kleinert
,
T.
, and
Schmidt
,
M.
,
2021
, “
Computing Feasible Points of Bilevel Problems With a Penalty Alternating Direction Method
,”
INFORMS J. Comput.
,
33
(
1
), pp.
198
215
.
12.
Aiyoshi
,
E.
, and
Shimizu
,
K.
,
1984
, “
A Solution Method for the Static Constrained Stackelberg Problem Via Penalty Method
,”
IEEE Trans. Automat. Contr.
,
29
(
12
), pp.
1111
1114
.
13.
Bialas
,
W. F.
, and
Karwan
,
M. H.
,
1984
, “
Two-Level Linear Programming
,”
Manag. Sci.
,
30
(
8
), pp.
1004
1020
.
14.
Edmunds
,
T. A.
, and
Bard
,
J. F.
,
1991
, “
Algorithms for Nonlinear Bilevel Mathematical Programs
,”
IEEE Trans. Syst. Man Cybern.
,
21
(
1
), pp.
83
89
.
15.
Korani
,
E.
, and
Eydi
,
A.
,
2021
, “
Bi-Level Programming Model and Kkt Penalty Function Solution Approach for Reliable Hub Location Problem
,”
Expert Syst. Appl.
,
184
, p.
115505
.
16.
Savard
,
G.
, and
Gauvin
,
J.
,
1994
, “
The Steepest Descent Direction for the Nonlinear Bilevel Programming Problem
,”
Oper. Res. Lett.
,
15
(
5
), pp.
265
272
.
17.
Mathieu
,
R.
,
Pittard
,
L.
, and
Anandalingam
,
G.
,
1994
, “
Genetic Algorithm Based Approach to Bi-Level Linear Programming
,”
RAIRO Oper. Res.
,
28
(
1
), pp.
1
21
.
18.
Rajesh
,
J.
,
Gupta
,
K.
,
Kusumakar
,
H. S.
,
Jayaraman
,
V. K.
, and
Kulkarni
,
B. D.
,
2003
, “
A Tabu Search Based Approach for Solving a Class of Bilevel Programming Problems in Chemical Engineering
,”
J. Heuristics
,
9
(
4
), pp.
307
319
.
19.
Hejazi
,
S. R.
,
Memariani
,
A.
,
Jahanshahloo
,
G.
, and
Sepehri
,
M. M.
,
2002
, “
Linear Bilevel Programming Solution by Genetic Algorithm
,”
Comput. Oper. Res.
,
29
(
13
), pp.
1913
1925
.
20.
Sinha
,
A.
,
Sinha
,
A.
,
Malo
,
P.
,
Malo
,
P.
,
Deb
,
K.
, and
Deb
,
K.
,
2014
, “
Test Problem Construction for Single-Objective Bilevel Optimization
,”
Evol. Comput.
,
22
(
3
), pp.
439
477
.
21.
Wang
,
G.
,
Ma
,
L.
, and
Chen
,
J.
,
2017
, “
A Bilevel Improved Fruit Fly Optimization Algorithm for the Nonlinear Bilevel Programming Problem
,”
Knowl. Based Syst.
,
138
, pp.
113
123
(in English).
22.
Abo-Elnaga
,
Y.
, and
Nasr
,
S.
,
2020
, “
Modified Evolutionary Algorithm and Chaotic Search for Bilevel Programming Problems
,”
Symmetry
,
12
(
5
), p.
767
.
23.
Nadizadeh
,
A.
, and
Zadeh
,
A. S.
,
2021
, “
A Bi-Level Model and Memetic Algorithm for Arc Interdiction Location-Routing Problem
,”
Comput. Appl. Math.
,
40
(
3
), pp.
1
44
.
24.
Amaral
,
S. d.
,
Victor
,
J.
,
Barra Montevechi
,
J. A.
,
de Carvalho Miranda
,
R.
, and
de Sousa Junior
,
W. T.
,
2022
, “
Metamodel-Based Simulation Optimization: A Systematic Literature Review
,”
Simul. Model. Pract. Theory
,
114
, p.
102403
.
25.
Tong
,
H.
,
Huang
,
C.
,
Minku
,
L. L.
, and
Yao
,
X.
,
2021
, “
Surrogate Models in Evolutionary Single-Objective Optimization: A New Taxonomy and Experimental Study
,”
Inf. Sci.
,
562
, pp.
414
437
.
26.
Steuben
,
J. C.
, and
Turner
,
C. J.
,
2012
, “
Robust Optimization of Mixed-Integer Problems Using Nurbs-Based Metamodels
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
4
), p.
041010
.
27.
Sinha
,
A.
,
Malo
,
P.
, and
Deb
,
K.
,
2014
, “
An improved bilevel evolutionary algorithm based on Quadratic Approximations
,”
The IEEE Congress on Evolutionary Computation (CEC)
,
Beijing, China
,
July 6–11
,
, pp. 1870–1877
.
28.
Sinha
,
A.
,
Lu
,
Z.
,
Deb
,
K.
, and
Malo
,
P.
,
2020
, “
Bilevel Optimization Based on Iterative Approximation of Multiple Mappings
,”
J. Heuristics
,
26
(
2
), pp.
151
185
.
29.
Islam
,
M. M.
,
Singh
,
H. K.
, and
Ray
,
T.
,
2017
, “
A Surrogate Assisted Approach for Single-Objective Bilevel Optimization
,”
IEEE Trans. Evol. Comput.
,
21
(
5
), pp.
681
696
.
30.
Mirjalili
,
S.
,
Saremi
,
S.
,
Mirjalili
,
S. M.
, and
Coelho
,
L. d. S.
,
2016
, “
Multi-Objective Grey Wolf Optimizer: A Novel Algorithm for Multi-Criterion Optimization
,”
Expert Syst. Appl.
,
47
, pp.
106
119
.
31.
Wen
,
U. P.
, and
Hsu
,
S. T.
,
1989
, “
A Note on a Linear Bilevel Programming Algorithm Based on Bicriteria Programming
,”
Comput. Oper. Res.
,
16
(
1
), pp.
79
83
.
32.
Fliege
,
J.
, and
Vicente
,
L. N.
,
2006
, “
Multicriteria Approach to Bilevel Optimization
,”
J. Optim. Theory Appl.
,
131
(
2
), pp.
209
225
.
33.
Wang
,
Y.
,
Li
,
H.
, and
Dang
,
C.
,
2011
, “
A New Evolutionary Algorithm for a Class of Nonlinear Bilevel Programming Problems and Its Global Convergence
,”
NFORMS J. Comput.
,
23
(
4
), pp.
618
629
.
34.
Xia
,
T.
, and
Li
,
M.
,
2021
, “
An Efficient Multi-Objective Robust Optimization Method by Sequentially Searching From Nominal Pareto Solutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
4
), p.
041010
.
35.
Kannan
,
B. K.
, and
Kramer
,
S. N.
,
1994
, “
An Augmented Lagrange Multiplier Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
405
411
.
You do not currently have access to this content.