Abstract

When maintenance resources in a manufacturing system are limited, a challenge arises in determining how to allocate these resources among multiple competing maintenance jobs. This work formulates an online prioritization problem to tackle this challenge using a Markov decision process (MDP) to model the system behavior and Monte Carlo tree search (MCTS) to seek optimal maintenance actions in various states of the system. Further, case-based reasoning (CBR) is adopted to retain and reuse search experience gathered from MCTS to reduce the computational effort needed over time and to improve decision-making efficiency. The proposed method results in increased system throughput when compared to existing methods of maintenance prioritization while also reducing the computation time needed to identify optimal maintenance actions as more information is gathered. This is especially beneficial in manufacturing settings where maintenance decisions must be made quickly to minimize the negative performance impact of machine downtime.

References

1.
Chang
,
H. S.
,
Fu
,
M. C.
,
Hu
,
J.
, and
Marcus
,
S. I.
,
2005
, “
An Adaptive Sampling Algorithm for Solving Markov Decision Processes
,”
Oper. Res.
,
53
(
1
), pp.
126
139
.
2.
Albers
,
S.
,
2009
, “
Online Scheduling
.”
Introduction to Scheduling
,
Y.
Robert
and
F.
Vivien
, eds.
CRC Press
, ch. 3.
3.
Keizer
,
M. C. O.
,
Flapper
,
S. D. P.
, and
Teunter
,
R. H.
,
2017
, “
Condition-Based Maintenance Policies for Systems With Multiple Dependent Components: A Review
,”
Eur. J. Oper. Res.
,
261
(
2
), pp.
405
420
.
4.
Alrabghi
,
A.
, and
Tiwari
,
A.
,
2015
, “
State of the Art in Simulation-Based Optimisation for Maintenance Systems
,”
Comput. Ind. Eng.
,
82
, pp.
167
182
.
5.
Chong
,
A. K. W.
,
Mohammed
,
A. H.
,
Abdullah
,
M. N.
, and
Rahman
,
M. S. A.
,
2019
, “
Maintenance Prioritization–a Review on Factors and Methods
,”
J. Facil. Manage.
,
17
(
1
), pp.
18
39
.
6.
Saaty
,
T. L.
,
2008
, “
Decision Making with the Analytic Hierarchy Process
,”
Int. J. Serv. Sci.
,
1
(
1
), pp.
83
98
.
7.
Sharma
,
S.
, and
Sisodia
,
A.
,
2016
, “
Prioritization of Tools in Joint Production-Maintenance Environment of Auto Component Manufacturer Using AHP–Fuzzy–TOPSIS
,”
Intell. Ind. Syst.
,
2
(
1
), pp.
73
84
.
8.
Khanlari
,
A.
,
Mohammadi
,
K.
, and
Sohrabi
,
B.
,
2008
, “
Prioritizing Equipments for Preventive Maintenance (PM) Activities Using Fuzzy Rules
,”
Comput. Ind. Eng.
,
54
(
2
), pp.
169
184
.
9.
Chang
,
Q.
,
Xiao
,
G.
,
Biller
,
S.
, and
Li
,
L.
,
2013
, “
Energy Saving Opportunity Analysis of Automotive Serial Production Systems
,”
IEEE Trans. Autom. Sci. Eng.
,
10
(
2
), pp.
334
342
.
10.
Gu
,
X.
,
Jin
,
X.
, and
Ni
,
J.
,
2015
, “
Prediction of Passive Maintenance Opportunity Windows on Bottleneck Machines in Complex Manufacturing Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031017
.
11.
Dekker
,
R.
,
1995
, “
Integrating Optimisation, Priority Setting, Planning and Combining of Maintenance Activities
,”
Eur. J. Oper. Res.
,
82
(
2
), pp.
225
240
.
12.
Dekker
,
R.
, and
Scarf
,
P. A.
,
1998
, “
On the Impact of Optimisation Models in Maintenance Decision Making: the State of the Art
,”
Reliab. Eng. Syst. Saf.
,
60
(
2
), pp.
111
119
.
13.
Teng
,
S.-H. G.
, and
Ho
,
S.-Y. M.
,
1996
, “
Failure Mode and Effects Analysis
,”
Int. J. Qual. Reliab. Manage.
,
13
(
5
), pp.
8
26
.
14.
Ding
,
S.-H.
,
Kamaruddin
,
S.
, and
Azid
,
I. A.
,
2014
, “
Maintenance Policy Selection Model–a Case Study in the Palm Oil Industry
,”
J. Manuf. Technol. Manage.
,
25
(
3
), pp.
415
435
.
15.
Yang
,
Z.
,
Chang
,
Q.
,
Djurdjanovic
,
D.
,
Ni
,
J.
, and
Lee
,
J.
,
2007
, “
Maintenance Priority Assignment Utilizing on-line Production Information
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
435
446
.
16.
Birnbaum
,
Z. W.
,
1968
,
On The Importance of Different Components in A Multicomponent System
.
Technical Report
,
Washington University Seattle Lab of Statistical Research
.
17.
Nguyen
,
K.-A.
,
Do
,
P.
, and
Grall
,
A.
,
2014
, “
Condition-Based Maintenance for Multi-Component Systems Using Importance Measure and Predictive Information
,”
Int. J. Syst. Sci.: Oper. Logist.
,
1
(
4
), pp.
228
245
.
18.
Si
,
S.
,
Liu
,
M.
,
Jiang
,
Z.
,
Jin
,
T.
, and
Cai
,
Z.
,
2019
, “
System Reliability Allocation and Optimization Based on Generalized Birnbaum Importance Measure
,”
IEEE Trans. Reliab.
,
68
(
3
), pp.
831
843
.
19.
Hoffman
,
M.
,
Song
,
E.
,
Brundage
,
M.
, and
Kumara
,
S.
,
2018
, “
Condition-Based Maintenance Policy Optimization Using Genetic Algorithms and Gaussian Markov Improvement Algorithm
,”
Annual Conference of the PHM Society
, Vol.
10
,
Philadelphia, PA
, Prognostics and Health Management Society.
20.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
,
Cambridge, MA
.
21.
Kearns
,
M.
,
Mansour
,
Y.
, and
Ng
,
A. Y.
,
2002
, “
A Sparse Sampling Algorithm for Near-Optimal Planning in Large Markov Decision Processes
,”
Mach. Learn.
,
49
(
2
), pp.
193
208
.
22.
Kocsis
,
L.
, and
Szepesvári
,
C.
,
2006
, “
Bandit Based Monte-Carlo Planning
,”
European Conference on Machine Learning
,
Berlin, Germany
,
Springer
, pp.
282
293
.
23.
Browne
,
C. B.
,
Powley
,
E.
,
Whitehouse
,
D.
,
Lucas
,
S. M.
,
Cowling
,
P. I.
,
Rohlfshagen
,
P.
,
Tavener
,
S.
,
Perez
,
D.
,
Samothrakis
,
S.
, and
Colton
,
S.
,
2012
, “
A Survey of Monte Carlo Tree Search Methods
,”
IEEE Trans. Comput. Intell. AI in Games
,
4
(
1
), pp.
1
43
.
24.
Hoffman
,
M.
,
Song
,
E.
,
Brundage
,
M.
, and
Kumara
,
S.
,
2021
, “
Online Improvement of Condition-Based Maintenance Policy Via Monte Carlo Tree Search
,”
IEEE Trans. Autom. Sci. Eng.
, pp.
1
12
.
25.
Kolodner
,
J. L.
,
1992
, “
An Introduction to Case-Based Reasoning
,”
Artif. Intell. Rev.
,
6
(
1
), pp.
3
34
.
26.
Aamodt
,
A.
, and
Plaza
,
E.
,
1994
, “
Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches
,”
AI Commun.
,
7
(
1
), pp.
39
59
.
27.
Bergmann
,
R.
, and
Wilke
,
W.
,
1996
, “
On the Role of Abstraction in Case-Based Reasoning
,” European Workshop on Advances in Case-Based Reasoning, Lausanne, Switzerland,
Springer
, pp.
28
43
.
28.
Bengtsson
,
M.
,
Olsson
,
E.
,
Funk
,
P.
, and
Jackson
,
M.
,
2004
, “
Technical Design of Condition Based Maintenance System-A Case Study Using Sound Analysis and Case-Based Reasoning
,”
8th International Conference of Maintenance and Reliability
,
Knoxville, TN
.
29.
Tsai
,
Y.
,
2009
, “
Applying a Case-Based Reasoning Method for Fault Diagnosis During Maintenance
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
223
(
10
), pp.
2431
2441
.
30.
Wan
,
S.
,
Li
,
D.
,
Gao
,
J.
, and
Li
,
J.
,
2019
, “
A Knowledge Based Machine Tool Maintenance Planning System Using Case-Based Reasoning Techniques
,”
Rob. Comput.-Integr. Manuf.
,
58
, pp.
80
96
.
31.
Yu
,
R.
,
Iung
,
B.
, and
Panetto
,
H.
,
2003
, “
A Multi-Agents Based E-Maintenance System with Case-Based Reasoning Decision Support
,”
Eng. Appl. Artif. Intell.
,
16
(
4
), pp.
321
333
.
32.
Gabel
,
T.
, and
Riedmiller
,
M.
,
2005
, “
CBR For State Value Function Approximation in Reinforcement Learning
,”
International Conference on Case-Based Reasoning
,
Chicago, IL
,
Springer
, pp.
206
221
.
33.
Varshavskii
,
P.
, and
Eremeev
,
A.
,
2010
, “
Modeling of Case-Based Reasoning in Intelligent Decision Support Systems
,”
Sci. Techn. Inf. Process.
,
37
(
5
), pp.
336
345
.
34.
Li
,
J.
, and
Meerkov
,
S. M.
,
2008
,
Production Systems Engineering
,
Springer Science & Business Media
,
New York
.
35.
Nguyen
,
Q.
,
Valizadegan
,
H.
, and
Hauskrecht
,
M.
,
2011
, “
Learning Classification With Auxiliary Probabilistic Information
,”
2011 IEEE 11th International Conference on Data Mining
,
Vancouver, Canada
,
IEEE
, pp.
477
486
.
36.
Aha
,
D. W.
,
2013
,
Lazy Learning
,
Springer Science & Business Media
,
New York
.
37.
Kim
,
K.-K.
,
Taeho
,
K.
, and
Song
,
E.
,
2021
, “
Selection of The Most Probable Best Under Input Uncertainty
,”
2021 Winter Simulation Conference
,
Phoenix, AZ
, IEEE.
38.
Hoffman
,
M.
,
2021
, Simantha, https://github.com/m-hoff/simantha
39.
Brundage
,
M. P.
,
Morris
,
K.
,
Sexton
,
T.
,
Moccozet
,
S.
, and
Hoffman
,
M.
,
2018
, “
Developing Maintenance Key Performance Indicators From Maintenance Work Order Data
,”
International Manufacturing Science and Engineering Conference
,
College Station, TX
, Vol.
51371
,
American Society of Mechanical Engineers
, p.
V003T02A027
.
You do not currently have access to this content.