Abstract

Geometric variation causes functional and aesthetic problems in the assemblies. The challenge is predicting the moments of the distribution of geometric deviations of assemblies to evaluate compliance with the set requirements. The joining operation, i.e., resistant spot welding (RSW), is one of the most crucial steps in the assembly process of nonrigid components, imposing forces on the parts and causes bending and deformation during the assembly, consequently contributing considerably to the final geometric outcome of the assembly. To model the behavior of the assembly realistically and achieve accurate simulation results, considering the sequence of joining is essential. In a digital twin of the assembly process, joining sequences need to be provided for the optimal geometric outcome of the batch of assemblies. The sequence optimization of the joining processes is a time-consuming combinatorial problem to solve. Variation analysis of nonrigid assemblies with stochastic part inputs, including optimal joining sequences, requires an extensive amount of the computational effort. More efficient approaches for evaluating assembly geometric variation are desired. In this article, a computationally efficient approach is proposed for geometric variation analysis and optimization of nonrigid assemblies with stochastic part inputs with respect to the RSW sequences. A clustering approach is proposed categorizing the incoming parts based on the part variation. Sequence optimization is performed, and geometric variation is analyzed for each cluster. The results show that the proposed method drastically reduces the computation time needed for sequence optimization compared to individualized optimization for each assembly.

References

1.
Liu
,
S. C.
, and
Hu
,
S. J.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
2.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
Evaluating Evolutionary Algorithms on Spot Welding Sequence Optimization With Respect to Geometrical Variation
,”
Procedia CIRP
,
75
, pp.
421
426
, The 15th CIRP Conference on Computer Aided Tolerancing, CIRP CAT 2018, June 11–13, Milan, Italy.
3.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2019
, “
A Method for Identification and Sequence Optimisation of Geometry Spot Welds in a Digital Twin Context
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
233
(
16
), pp.
5610
5621
.
4.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2010
, “
Variation Simulation of Spot Welding Sequence for Sheet Metal Assemblies
,”
Proceedings of NordDesign2010 International Conference on Methods and Tools for Product and Production Development
, Vol.
2
,
Gothenburg, Sweden
,
Aug. 25–27
, pp.
519
528
.
5.
Tabar
,
R. S.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2019
, “
A Novel Rule-Based Method for Individualized Spot Welding Sequence Optimization With Respect to Geometrical Quality
,”
ASME J. Manuf. Sci. Eng.
,
141
(
11
), p.
111013
.
6.
Mantripragada
,
R.
, and
Whitney
,
D.
,
1998
, “
The Datum Flow Chain: A Systematic Approach to Assembly Design and Modeling
,”
Res. Eng. Design
,
10
(
3
), pp.
150
165
.
7.
Carlson
,
J. S.
,
Spensieri
,
D.
,
Wärmefjord
,
K.
,
Segeborn
,
J.
, and
Söderberg
,
R.
,
2014
, “
Minimizing Dimensional Variation and Robot Traveling Time in Welding Stations
,”
Procedia Cirp
,
23
, pp.
77
82
.
8.
Åblad
,
E.
,
Spensieri
,
D.
,
Bohlin
,
R.
, and
Carlson
,
J. S.
,
2017
, “
Intersection-Free Geometrical Partitioning of Multirobot Stations for Cycle Time Optimization
,”
IEEE Trans. Auto. Sci. Eng.
,
15
(
2
), pp.
842
851
.
9.
Wang
,
H.
, and
Ceglarek
,
D.
,
2012
, “
Representation, Generation, and Analysis of Mechanical Assembly Sequences With K-ary Operations
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
1
), p.
011001
.
10.
Shahi
,
V. J.
,
Masoumi
,
A.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2020
, “
A Quality-Driven Assembly Sequence Planning and Line Configuration Selection for Non-Ideal Compliant Structures Assemblies
,”
Int. J. Adv. Manuf. Technol.
,
106
(
1
), pp.
15
30
.
11.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Carlson
,
J. S.
, and
Lindkvist
,
L.
,
2017
, “
Toward a Digital Twin for Real-Time Geometry Assurance in Individualized Production
,”
CIRP. Ann.
,
66
(
1
), pp.
137
140
.
12.
Moroni
,
G.
, and
Polini
,
W.
,
2003
, “
Tolerance-Based Variations in Solid Modeling
,”
ASME J. Comput. Inf. Sci. Eng.
,
3
(
4
), pp.
345
352
.
13.
Zhao
,
Z.
,
Bezdecny
,
M.
,
Lee
,
B.
,
Wu
,
Y.
,
Robinson
,
D.
,
Bauer
,
L.
,
Slagle
,
M.
,
Coleman
,
D.
,
Barnes
,
J.
, and
Walls
,
S.
,
2009
, “
Prediction of Assembly Variation During Early Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
3
), p.
031003
.
14.
Pahkamaa
,
A.
,
Wärmefjord
,
K.
,
Karlsson
,
L.
,
Söderberg
,
R.
, and
Goldak
,
J.
,
2012
, “
Combining Variation Simulation With Welding Simulation for Prediction of Deformation and Variation of a Final Assembly
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
2
), p.
021002
.
15.
Camelio
,
J.
,
Hu
,
S. J.
, and
Ceglarek
,
D.
,
2003
, “
Modeling Variation Propagation of Multi-station Assembly Systems with Compliant Parts
,”
ASME J. Mech. Des.
,
125
(
4
), pp.
673
681
.
16.
Polini
,
W.
, and
Corrado
,
A.
,
2020
, “
Methods of Influence Coefficients to Evaluate Stress and Deviation Distribution of Flexible Assemblies–a Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
5
), pp.
2901
2915
.
17.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Patalano
,
S.
,
2011
, “
Simulation of Variational Compliant Assemblies with Shape Errors Based on Morphing Mesh Approach
,”
Int. J. Adv. Manuf. Technol.
,
53
(
1
), pp.
47
61
.
18.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2006
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients With Contact Modeling
,”
ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
19.
Xie
,
K.
,
Wells
,
L.
,
Camelio
,
J. A.
, and
Youn
,
B. D.
,
2007
, “
Variation Propagation Analysis on Compliant Assemblies Considering Contact Interaction
,”
ASME J. Manuf. Sci. Eng.
,
129
(
5
), pp.
934
942
.
20.
Lindau
,
B.
,
Lorin
,
S.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2016
, “
Efficient Contact Modeling in Nonrigid Variation Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011002
.
21.
Lupuleac
,
S.
,
Zaitseva
,
N.
,
Stefanova
,
M.
,
Berezin
,
S.
,
Shinder
,
J.
,
Petukhova
,
M.
, and
Bonhomme
,
E.
,
2019
, “
Simulation of the Wing-to-Fuselage Assembly Process
,”
ASME J. Manuf. Sci. Eng.
,
141
(
6
), p.
061009
.
22.
Lorin
,
S.
,
Lindau
,
B.
,
Sadeghi Tabar
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2018
, “
Efficient Variation Simulation of Spot-Welded Assemblies
,”
Advanced Manufacturing of ASME International Mechanical Engineering Congress and Exposition
,
Pittsburgh, PA
,
Nov. 9-15
, p. V002T02A110.
23.
Lorin
,
S.
,
Lindau
,
B.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2018
, “
Efficient Compliant Variation Simulation of Spot-Welded Assemblies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
1
), p.
011007
.
24.
Tabar
,
R. S.
,
Lorin
,
S.
,
Cromvik
,
C.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2021
, “
Efficient Spot Welding Sequence Simulation in Compliant Variation Simulation
,”
ASME J. Manuf. Sci. Eng.
,
143
(
7
), p.
071009
.
25.
Tabar
,
R. S.
,
Lorin
,
S.
,
Cromvik
,
C.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2020
, “
Efficient Spot Welding Sequence Simulation in Compliant Variation Simulation
,”
Advanced Manufacturing of ASME International Mechanical Engineering Congress and Exposition
,
Virtual, Online
,
Nov. 16–19
, Vol. 2B, p. BT02A063.
26.
Wärmefjord
,
K.
,
Söderberg
,
R.
,
Lindkvist
,
L.
,
Lindau
,
B.
, and
Carlson
,
J. S.
,
2017
, “
Inspection Data to Support a Digital Twin for Geometry Assurance
,”
ASME International Mechanical Engineering Congress and Exposition, Volume: 2 Advanced Manufacturing
,
Tampa, FL
,
Nov. 3–9
, p.
V002T02A101
.
27.
Babu
,
M.
,
Franciosa
,
P.
, and
Ceglarek
,
D.
,
2019
, “
Spatio-Temporal Adaptive Sampling for Effective Coverage Measurement Planning During Quality Inspection of Free Form Surfaces Using Robotic 3d Optical Scanner
,”
J. Manuf. Syst.
,
53
, pp.
93
108
.
28.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP. Ann.
,
66
(
1
), pp.
141
144
.
29.
Franciosa
,
P.
,
Sokolov
,
M.
,
Sinha
,
S.
,
Sun
,
T.
, and
Ceglarek
,
D.
,
2020
, “
Deep Learning Enhanced Digital Twin for Closed-Loop In-Process Quality Improvement
,”
CIRP. Ann.
,
69
(
1
), pp.
369
372
.
30.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2020
, “
A New Surrogate Model–Based Method for Individualized Spot Welding Sequence Optimization With Respect to Geometrical Quality
,”
Int. J. Adv. Manuf. Technol.
,
106
(
5
), pp.
2333
2346
.
31.
Tabar
,
R. S.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2020
, “
Efficient Spot Welding Sequence Optimization in a Geometry Assurance Digital Twin
,”
ASME J. Mech. Des.
,
142
(
10
), p.
102001
.
32.
Liao
,
Y. G.
,
2005
, “
Optimal Design of Weld Pattern in Sheet Metal Assembly Based on a Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
26
(
5
), pp.
512
516
.
33.
Xie
,
L. S.
, and
Hsieh
,
C.
,
2002
, “
Clamping and Welding Sequence Optimisation for Minimising Cycle Time and Assembly Deformation
,”
Int. J. Mater. Product Technol.
,
17
(
5–6
), pp.
389
399
.
34.
Huang
,
M.-W.
,
Hsieh
,
C. C.
, and
Arora
,
J. S.
,
1997
, “
A Genetic Algorithm for Sequencing Type Problems in Engineering Design
,”
Int. J. Numer. Methods Eng.
,
40
(
17
), pp.
3105
3115
.
35.
Tabar
,
R. S.
,
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2021
, “
Critical Joint Identification for Efficient Sequencing
,”
J. Intell. Manufact.
,
32
(
3
), pp.
769
780
.
36.
Tabar
,
R. S.
,
Wärmefjord
,
K.
, and
Söderberg
,
R.
,
2020
, “
Rapid Sequence Optimization of Spot Welds for Improved Geometrical Quality Using a Novel Stepwise Algorithm
,”
Eng. Optim.
,
53
(
5
), pp.
867
884
.
37.
Likas
,
A.
,
Vlassis
,
N.
, and
Verbeek
,
J. J.
,
2003
, “
The Global K-Means Clustering Algorithm
,”
Pattern Recognition
,
36
(
2
), pp.
451
461
.
38.
Chiang
,
M. M.-T.
, and
Mirkin
,
B.
,
2010
, “
Intelligent Choice of the Number of Clusters in K-means Clustering: An Experimental Study With Different Cluster Spreads
,”
J. Classif.
,
27
(
1
), pp.
3
40
.
39.
RD&T Technology AB
,
2017
, RD&T Software Manual, Mölndal, Sweden, http://www.rdnt.se
You do not currently have access to this content.