Abstract

Lattice structures (LS) manufactured by 3D printing are widely applied in many areas, such as aerospace and tissue engineering, due to their lightweight and adjustable mechanical properties. It is necessary to reduce costs by predicting the mechanical properties of LS at the design stage since 3D printing is exorbitant at present. However, predicting mechanical properties quickly and accurately poses a challenge. To address this problem, this study proposes a novel method that is applied to different LS and materials to predict their mechanical properties through machine learning. First, this study voxelized 3D models of the LS units and then calculated the entropy vector of each model as the geometric feature of the LS units. Next, the porosity, material density, elastic modulus, and unit length of the lattice unit are combined with entropy as the inputs of the machine learning model. The sample set includes 57 samples collected from previous studies. Support vector regression (SVR) was used in this study to predict the mechanical properties. The results indicate that the proposed method can predict the mechanical properties of LS effectively and is suitable for different LS and materials. The significance of this work is that it provides a method with great potential to promote the design process of lattice structures by predicting their mechanical properties quickly and effectively.

References

1.
Lei
,
H.
,
Li
,
C.
,
Meng
,
J.
,
Zhou
,
H.
,
Liu
,
Y.
,
Zhang
,
X.
,
Wang
,
P.
, and
Fang
,
D.
,
2019
, “
Evaluation of Compressive Properties of SLM-Fabricated Multi-Layer Lattice Structures by Experimental Test and μ-CT-Based Finite Element Analysis
,”
Mater. Des.
,
169
, p.
107685
.
2.
Jin
,
N.
,
Yan
,
Z.
,
Wang
,
Y.
,
Cheng
,
H.
, and
Zhang
,
H.
,
2021
, “
Effects of Heat Treatment on Microstructure and Mechanical Properties of Selective Laser Melted Ti-6Al-4V Lattice Materials
,”
Int. J. Mech. Sci.
,
190
, p.
106042
.
3.
Li
,
P. Y.
,
Ma
,
Y. E.
,
Sun
,
W. B.
,
Qian
,
X.
,
Zhang
,
W.
, and
Wang
,
Z. H.
,
2021
, “
Fracture and Failure Behavior of Additive Manufactured Ti6Al4 V Lattice Structures Under Compressive Load
,”
Eng. Fract. Mech.
,
244
, p.
107537
.
4.
Zhang
,
L.
,
Feih
,
S.
,
Daynes
,
S.
,
Chang
,
S.
,
Wang
,
M. Y.
,
Wei
,
J.
, and
Lu
,
W. F.
,
2018
, “
Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading
,”
Addit. Manuf.
,
23
, pp.
505
515
.
5.
Feng
,
Q.
,
Tang
,
Q.
,
Liu
,
Y.
,
Setchi
,
R.
,
Soe
,
S.
,
Ma
,
S.
, and
Bai
,
L.
,
2018
, “
Quasi-Static Analysis of Mechanical Properties of Ti6Al4 V Lattice Structures Manufactured Using Selective Laser Melting
,”
Int. J. Adv. Manuf. Technol.
,
94
(
5–8
), pp.
2301
2313
.
6.
Ma
,
S.
,
Tang
,
Q.
,
Feng
,
Q.
,
Song
,
J.
,
Han
,
X.
, and
Guo
,
F.
,
2019
, “
Mechanical Behaviours and Mass Transport Properties of Bone-Mimicking Scaffolds Consisted of Gyroid Structures Manufactured Using Selective Laser Melting
,”
J. Mech. Behav. Biomed. Mater.
,
93
, pp.
158
169
.
7.
Song
,
J.
,
Tang
,
Q.
,
Feng
,
Q.
,
Ma
,
S.
,
Setchi
,
R.
,
Liu
,
Y.
,
Han
,
Q.
,
Fan
,
X.
, and
Zhang
,
M.
,
2019
, “
Effect of Heat Treatment on Microstructure and Mechanical Behaviours of 18Ni-300 Maraging Steel Manufactured by Selective Laser Melting
,”
Opt. Laser Technol.
,
120
, p.
105725
.
8.
Zhang
,
L.
,
Song
,
B.
,
Choi
,
S.
, and
Shi
,
Y.
,
2021
, “
A Topology Strategy to Reduce Stress Shielding of Additively Manufactured Porous Metallic Biomaterials
,”
Int. J. Mech. Sci.
,
197
, p.
106331
.
9.
Ma
,
S.
,
Tang
,
Q.
,
Han
,
X.
,
Feng
,
Q.
,
Song
,
J.
,
Setchi
,
R.
,
Liu
,
Y.
, et al
,
2020
, “
Manufacturability, Mechanical Properties, Mass-Transport Properties and Biocompatibility of Triply Periodic Minimal Surface (TPMS) Porous Scaffolds Fabricated by Selective Laser Melting
,”
Mater. Des.
,
195
, p.
109034
.
10.
Alqahtani
,
N.
,
Armstrong R
,
T.
, and
Mostaghimi
,
P.
,
2018
, “
Deep Learning Convolutional Neural Networks to Predict Porous Media Properties: SPE Asia Pacific Oil and Gas Conference and Exhibition
,”
SPE Asia Pacific Oil and Gas Conference and Exhibition
,
Brisbane, Australia
,
Oct. 23–25
.
11.
Wu
,
J.
,
Yin
,
X.
, and
Xiao
,
H.
,
2018
, “
Seeing Permeability From Images: Fast Prediction With Convolutional Neural Networks
,”
Sci. Bull.
,
63
(
18
), pp.
1215
1222
.
12.
Ma
,
S.
,
Tang
,
Q.
,
Liu
,
Y.
, and
Feng
,
Q.
,
2021
, “
Predicting Mechanical Properties of 3D Printed Lattice Structures
,” ASME Paper No. DETC2021–70249.
13.
Choy
,
S. Y.
,
Sun
,
C.
,
Leong
,
K. F.
, and
Wei
,
J.
,
2017
, “
Compressive Properties of Ti-6Al-4V Lattice Structures Fabricated by Selective Laser Melting: Design, Orientation and Density
,”
Addit. Manuf.
,
16
, pp.
213
224
.
14.
Maskery
,
I.
,
Sturm
,
L.
,
Aremu
,
A. O.
,
Panesar
,
A.
,
Williams
,
C. B.
,
Tuck
,
C. J.
,
Wildman
,
R. D.
,
Ashcroft
,
I. A.
, and
Hague
,
R. J. M.
, “
2018, “Insights Into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing
,”
Polymer
,
152
, pp.
62
71
.
15.
Arjunan
,
A.
,
Demetriou
,
M.
,
Baroutaji
,
A.
, and
Wang
,
C.
,
2019
, “
Mechanical Performance of Highly Permeable Laser Melted Ti6Al4 V Bone Scaffolds
,”
J. Mech. Behav. Biomed. Mater.
,
102
, p.
103517
.
16.
Hazlehurst
,
K.
,
Wang
,
C. J.
, and
Stanford
,
M.
,
2013
, “
Evaluation of the Stiffness Characteristics of Square Pore CoCrMo Cellular Structures Manufactured Using Laser Melting Technology for Potential Orthopaedic Applications
,”
Mater. Des.
,
51
, pp.
949
955
.
17.
Munford
,
M.
,
Hossain
,
U.
,
Ghouse
,
S.
, and
Jeffers
,
J. R. T.
,
2020
, “
Prediction of Anisotropic Mechanical Properties for Lattice Structures
,”
Addit. Manuf.
,
32
, p.
101041
.
18.
Benedetti
,
M.
,
Klarin
,
J.
,
Johansson
,
F.
,
Fontanari
,
V.
,
Luchin
,
V.
,
Zappini
,
G.
, and
Molinari
,
A.
,
2019
, “
Study of the Compression Behaviour of Ti6Al4 V Trabecular Structures Produced by Additive Laser Manufacturing
,”
Materials
,
12
(
9
), p.
1471
.
19.
Han
,
C.
,
Yan
,
C.
,
Wen
,
S.
,
Xu
,
T.
,
Li
,
S.
,
Liu
,
J.
,
Wei
,
Q.
, and
Shi
,
Y.
,
2017
, “
Effects of the Unit Cell Topology on the Compression Properties of Porous Co-Cr Scaffolds Fabricated via Selective Laser Melting
,”
Rapid Prototyp. J.
,
23
(
1
), pp.
16
27
.
20.
Hassanin
,
H.
,
Alkendi
,
Y.
,
Elsayed
,
M.
,
Essa
,
K.
, and
Zweiri
,
Y.
,
2020
, “
Controlling the Properties of Additively Manufactured Cellular Structures Using Machine Learning Approaches
,”
Adv. Eng. Mater.
,
22
(
3
), p.
1901338
.
21.
Taylor
,
M.
,
Perilli
,
E.
, and
Martelli
,
S.
,
2017
, “
Development of a Surrogate Model Based on Patient Weight, Bone Mass and Geometry to Predict Femoral Neck Strains and Fracture Loads
,”
J. Biomech.
,
55
, pp.
121
127
.
22.
Zhang
,
M.
,
Gong
,
H.
,
Zhang
,
K.
, and
Zhang
,
M.
,
2019
, “
Prediction of Lumbar Vertebral Strength of Elderly Men Based on Quantitative Computed Tomography Images Using Machine Learning
,”
Osteoporos. Int.
,
30
(
11
), pp.
2271
2282
.
23.
Deng
,
Z.
,
Yin
,
H.
,
Jiang
,
X.
,
Zhang
,
C.
,
Zhang
,
G.
,
Xu
,
B.
,
Yang
,
G.
, et al
,
2020
, “
Machine-Learning-Assisted Prediction of the Mechanical Properties of Cu-Al Alloy
,”
Int. J. Miner. Metall. Mater.
,
27
(
3
), pp.
362
373
.
24.
Furuya
,
T.
, and
Ohbuchi
,
R.
,
2018
, “
Learning Part-in-Whole Relation of 3D Shapes for Part-Based 3D Model Retrieval
,”
Comput. Vision Image Understanding
,
166
, pp.
102
114
.
25.
Kim
,
H.
,
Cha
,
M.
, and
Mun
,
D.
,
2017
, “
Shape Distribution-Based Approach to Comparing 3D CAD Assembly Models
,”
J. Mech. Sci. Technol.
,
31
(
12
), pp.
5627
5638
.
26.
Lu
,
Z.
,
Guo
,
J.
,
Xiao
,
J.
,
Wang
,
Y.
,
Zhang
,
X.
, and
Yan
,
D.-M.
,
2021
, “
Extracting Cycle-Aware Feature Curve Networks From 3D Models
,”
Comput.-Aided Des.
,
131
, p.
102949
.
27.
Makem
,
J. E.
,
Fogg
,
H. J.
, and
Mukherjee
,
N.
,
2020
, “
Automatic Feature Recognition Using the Medial Axis for Structured Meshing of Automotive Body Panels
,”
Comput.-Aided Des.
,
124
, p.
102845
.
28.
Kim
,
S.
,
Chi
,
H.
, and
Ramani
,
K.
,
2021
, “
Object Synthesis by Learning Part Geometry With Surface and Volumetric Representations
,”
Comput.-Aided Des.
,
130
, p.
102932
.
29.
Wei
,
L.
, and
Yuanjun
,
H.
,
2008
, “
Representation and Retrieval of 3D CAD Models in Parts Library
,”
Int. J. Adv. Manuf. Technol.
,
36
(
9–10
), pp.
950
958
.
30.
Maskery
,
I.
,
Aboulkhair
,
N. T.
,
Aremu
,
A. O.
,
Tuck
,
C. J.
, and
Ashcroft
,
I. A.
,
2017
, “
Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices
,”
Addit. Manuf.
,
16
, pp.
24
29
.
31.
Bartolomeu
,
F.
,
Costa
,
M. M.
,
Alves
,
N.
,
Miranda
,
G.
, and
Silva
,
F. S.
,
2021
, “
Selective Laser Melting of Ti6Al4 V sub-Millimetric Cellular Structures: Prediction of Dimensional Deviations and Mechanical Performance
,”
J. Mech. Behav. Biomed. Mater.
,
113
, p.
104123
.
32.
Ataee
,
A.
,
Li
,
Y.
,
Brandt
,
M.
, and
Wen
,
C.
,
2018
, “
Ultrahigh-Strength Titanium Gyroid Scaffolds Manufactured by Selective Laser Melting (SLM) for Bone Implant Applications
,”
Acta Mater.
,
158
, pp.
354
368
.
33.
Wang
,
S.
,
Liu
,
L.
,
Zhou
,
X.
,
Zhu
,
L.
, and
Hao
,
Y.
,
2020
, “
The Design of Ti6Al4 V Primitive Surface Structure with Symmetrical Gradient of Pore Size in Biomimetic Bone Scaffold
,”
Mater. Des.
,
193
, p.
108830
.
34.
Liao
,
B.
,
Xia
,
R. F.
,
Li
,
W.
,
Lu
,
D.
, and
Jin
,
Z. M.
,
2021
, “
3D-Printed Ti6Al4 V Scaffolds With Graded Triply Periodic Minimal Surface Structure for Bone Tissue Engineering
,”
J. Mater. Eng. Perform.
,
30
(
7
), pp.
4993
5004
.
You do not currently have access to this content.