Abstract

This paper introduces a novel reverse engineering (RE) technique for the reconstruction of editable computer-aided design (CAD) models of mechanical parts’ assemblies. The input is a point cloud of a mechanical parts’ assembly that has been acquired as a whole, i.e., without disassembling it prior to its digitization. The proposed framework allows for the reconstruction of the parametric CAD assembly model through a multi-step reconstruction and fitting approach. It is modular and it supports various exploitation scenarios depending on the available data and starting point. It also handles incomplete datasets. The reconstruction process starts from roughly sketched and parameterized CAD geometries (i.e., 2D sketches, 3D parts, or assemblies) that are then used as input of a simulated annealing-based fitting algorithm, which minimizes the deviation between the point cloud and the adapted geometries. The coherence of the CAD models is maintained by a CAD modeler that performs the geometries’ updates while guaranteeing the possibly imposed constraints and model coherence. The optimization process leverages a two-level filtering technique able to capture and manage the boundaries of the geometries inside the overall point cloud in order to allow local fitting and interfaces detection. It is a user-driven approach where the user decides what are the most suitable steps and sequence to operate. It has been tested and validated on both real scanned point clouds and as-scanned virtually generated point clouds incorporating several artifacts that would appear with real acquisition devices.

References

1.
Lu
,
Y.
,
2017
, “
Industry 4.0: A Survey on Technologies, Applications and Open Research Issues
,”
J. Indus. Inform. Int.
,
6
, pp.
1
10
.
2.
Berger
,
M.
,
Tagliasacchi
,
A.
,
Seversky
,
L. M.
,
Alliez
,
P.
,
Guennebaud
,
G.
,
Levine
,
J. A.
,
Sharf
,
A.
, and
Silva
,
C. T.
,
2017
, “A Survey of Surface Reconstruction From Point Clouds,”
Computer Graphics Forum
, Vol.
36
,
Wiley Online Library
, pp.
301
329
.
3.
Falcidieno
,
B.
,
Giannini
,
F.
,
Léon
,
J.-C.
, and
Pernot
,
J.-P.
,
2014
, “
Processing Free Form Objects Within a Product Development Process Framework
,”
Advances in Computers and Information in Engineering Research
, pp.
317
344
.
4.
Buonamici
,
F.
,
Carfagni
,
M.
,
Furferi
,
R.
,
Governi
,
L.
,
Lapini
,
A.
, and
Volpe
,
Y.
,
2018
, “
Reverse Engineering Modeling Methods and Tools: A Survey
,”
Comput.-Aided Design Appl.
,
15
(
3
), pp.
443
464
.
5.
Sommer
,
M.
,
Stjepandić
,
J.
,
Stobrawa
,
S.
, and
von Soden
,
M.
,
2019
, “Automatic Generation of Digital Twin Based on Scanning and Object Recognition,”
Transdisciplinary Engineering for Complex Socio-Technical Systems
,
IOS Press
, pp.
645
654
.
6.
Shabayek
,
A. E. R.
,
Aouada
,
D.
,
Cherenkova
,
K.
, and
Gusev
,
G.
,
2020
, “
Towards Automatic CAD Modeling From 3D Scan Sketch Based Representation
,”
Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020), GRAPP
, pp.
392
398
.
7.
Dúbravčík
,
M.
, and
Kender
,
Š.
,
2012
, “
Application of Reverse Engineering Techniques in Mechanics System Services
,”
Procedia. Eng.
,
48
, pp.
96
104
.
8.
Shabani
,
B.
, and
Pandilov
,
Z.
,
2017
, “
Analyzing and Application of Reverse Engineering for Design and Development of Mechanical Parts
,”
Mech. Eng.- Sci. J.
,
35
(
2
), pp.
89
96
.
9.
Guo
,
B.
,
Wang
,
J.
,
Jiang
,
X.
,
Li
,
C.
,
Su
,
B.
,
Cui
,
Z.
,
Sun
,
Y.
, and
Yang
,
C.
,
2020
, “
A 3D Surface Reconstruction Method for Large-Scale Point Cloud Data
,”
Math. Prob. Eng.
,
2020
, p.
8670151
.
10.
Anwer
,
N.
, and
Mathieu
,
L.
,
2016
, “
From Reverse Engineering to Shape Engineering in Mechanical Design
,”
CIRP. Ann.
,
65
(
1
), pp.
165
168
.
11.
Petitjean
,
S.
,
2002
, “
A Survey of Methods for Recovering Quadrics in Triangle Meshes
,”
ACM Comput. Surveys (CSUR)
,
34
(
2
), pp.
211
262
.
12.
Lukács
,
G.
,
Marshall
,
A.
, and
Martin
,
R.
,
1997
, “
Geometric Least-Squares Fitting of Spheres, Cylinders, Cones and Tori
.”
RECCAD, Deliverable Document 2 and 3, COPERNICUS project
(1068).
13.
Werghi
,
N.
,
Fisher
,
R.
,
Ashbrook
,
A.
, and
Robertson
,
C.
,
1999
, “
Faithful Recovering of Quadric Surfaces From 3D Range Data
,”
Second International Conference on 3-D Digital Imaging and Modeling (Cat. No. PR00062)
, pp.
280
289
.
14.
Satish
,
A.
,
Rambabu
,
K.
, and
Ramji
,
M.
,
2013
, “
Part Modelling With Reverse Engineering
,”
Int. J. Eng. Res. & Tech.
,
2
, pp.
486
94
.
15.
Mohaghegh
,
K.
,
Sadeghi
,
M.
, and
Abdullah
,
A.
,
2007
, “
Reverse Engineering of Turbine Blades Based on Design Intent
,”
Int. J. Adv. Manuf. Technol.
,
32
(
9-10
), pp.
1009
1020
.
16.
Kumar
,
A.
,
Jain
,
P.
, and
Pathak
,
P.
,
2013
, “
Reverse Engineering in Product Manufacturing: An Overview
,”
DAAAM Int. Scientific Book
, pp.
665
678
.
17.
Sørensen
,
T. A.
,
Mark
,
N.
, and
Møgelmose
,
A.
,
2021
, “
A Ransac Based CAD Mesh Reconstruction Method Using Point Clustering for Mesh Connectivity
,”
International Conference on Machine Vision and Applications (ICMVA)
.
18.
Azernikov
,
S.
, and
Fischer
,
A.
,
2004
, “
Efficient Surface Reconstruction Method for Distributed CAD
,”
Comput.-Aided Design
,
36
(
9
), pp.
799
808
.
19.
Mitra
,
N.
,
Wand
,
M.
,
Zhang
,
H. R.
,
Cohen-Or
,
D.
,
Kim
,
V.
, and
Huang
,
Q.-X.
,
2013
, “
Struct-aware Shape Process
,”
SIGGRAPH Asia 2013 Courses
, pp.
1
20
.
20.
Li
,
Y.
,
Wu
,
X.
,
Chrysathou
,
Y.
,
Sharf
,
A.
,
Cohen-Or
,
D.
, and
Mitra
,
N. J.
,
2011
, “
Globfit: Consistently Fitting Primitives by Discovering Global Relations
,”
ACM Trans. Graphics
,
30
(
4
), pp.
1
12
.
21.
Schnabel
,
R.
,
Wahl
,
R.
, and
Klein
,
R.
,
2007
, “
Efficient Ransac for Point-cloud Shape Detection
,”
Comput. Graphics Forum
,
26
(
2
), pp.
214
226
.
22.
Liu
,
J.
,
2020
, “
An Adaptive Process of Reverse Engineering From Point Clouds to CAD Models
,”
Int. J. Comput. Int. Manufact.
,
33
(
9
), pp.
840
858
.
23.
Monszpart
,
A.
,
Mellado
,
N.
,
Brostow
,
G. J.
, and
Mitra
,
N. J.
,
2015
, “
Rapter : Rebuilding Man-made Scenes With Regular Arrangements of Planes
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
12
.
24.
Bey
,
A.
,
Chaine
,
R.
,
Marc
,
R.
,
Thibault
,
G.
, and
Akkouche
,
S.
,
2011
, “
Reconstruction of Consistent 3D CAD Models From Point Cloud Data Using a Priori CAD Models
,” ISPRS Workshop on Laser Scanning, Vol.
1
.
25.
Buonamici
,
F.
,
Carfagni
,
M.
,
Furferi
,
R.
,
Governi
,
L.
,
Lapini
,
A.
, and
Volpe
,
Y.
,
2018
, “
Reverse Engineering of Mechanical Parts: A Template-Based Approach
,”
J. Comput. Design Eng.
,
5
(
2
), pp.
145
159
.
26.
Erdős
,
G.
,
Nakano
,
T.
, and
Váncza
,
J.
,
2014
, “
Adapting Cad Models of Complex Engineering Objects to Measured Point Cloud Data
,”
CIRP. Ann.
,
63
(
1
), pp.
157
160
.
27.
Ishimtsev
,
V.
,
Bokhovkin
,
A.
,
Artemov
,
A.
,
Ignatyev
,
S.
,
Niessner
,
M.
,
Zorin
,
D.
, and
Burnaev
,
E.
,
2020
, “
CAD-Deform: Deformable Fitting of CAD Models to 3d Scans
,”
Computer Vision–ECCV 2020: 16th European Conference
,
Glasgow, UK
,
Aug. 23–28
, Proceedings, Part XIII 16,
Springer
, pp.
599
628
.
28.
Durupt
,
A.
,
Remy
,
S.
, and
Ducellier
,
G.
,
2011
, “Reverse Engineering of a Piston Using Knowledge Based Reverse Engineering Approach,”
Global Product Development
,
Springer
, pp.
683
690
.
29.
Thompson
,
W. B.
,
Owen
,
J. C.
,
Germain
,
H. d. S.
,
Stark
,
S. R.
, and
Henderson
,
T. C.
,
1999
, “
Feature-Based Reverse Engineering of Mechanical Parts
,”
IEEE. Trans. Rob. Autom.
,
15
(
1
), pp.
57
66
.
30.
Gouaty
,
G.
,
Fang
,
L.
,
Michelucci
,
D.
,
Daniel
,
M.
,
Pernot
,
J.-P.
,
Raffin
,
R.
,
Lanquetin
,
S.
, and
Neveu
,
M.
,
2016
, “
Variational Geometric Modeling With Black Box Constraints and Dags
,”
Computer-Aided Design
,
75
, pp.
1
12
.
31.
Pernot
,
J.-P.
,
Michelucci
,
D.
,
Daniel
,
M.
, and
Foufou
,
S.
,
2019
, “
Towards a Better Integration of Modelers and Black Box Constraint Solvers Within the Product Design Process
,”
Annal. Math. Artificial Intel.
,
85
(
2
), pp.
147
173
.
32.
Besl
,
P. J.
, and
McKay
,
N. D.
,
1992
, “
A Method for Registration of 3-D Shapes
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
14
(
2
), pp.
239
256
.
33.
Montlahuc
,
J.
,
Shah
,
G. A.
,
Polette
,
A.
, and
Pernot
,
J.-P.
,
2018
, “
As-Scanned Point Clouds Generation for Virtual Reverse Engineering of CAD Assembly Models
,”
Comput.-Aided Design Appl.
,
16
(
6
), pp.
1
11
.
34.
Katz
,
S.
,
Tal
,
A.
, and
Basri
,
R.
,
2007
, “
Direct Visibility of Point Sets
,”
ACM Trans. Graphics
,
26
(
3
), pp.
1
11
.
35.
Danglade
,
F.
,
Pernot
,
J.-P.
,
Véron
,
P.
, and
Fine
,
L.
,
2017
, “
A Priori Evaluation of Simulation Models Preparation Processes Using Artificial Intelligence Techniques
,”
Comput. Indus.
,
91
, pp.
45
61
.
You do not currently have access to this content.