Abstract

Topology optimization has been successful in generating optimal topologies of various structures arising in real-world applications. Since these applications can have complex and large domains, topology optimization suffers from a high computational cost because of the use of unstructured meshes for discretization of these domains and their finite element analysis (FEA). This article addresses this challenge by developing three graphics processing unit (GPU)-based element-by-element strategies targeting unstructured all-hexahedral mesh for the matrix-free precondition conjugate gradient (PCG) finite element solver. These strategies mainly perform sparse matrix multiplication (SpMV) arising with the FEA solver by allocating more compute threads of GPU per element. Moreover, the strategies are developed to use shared memory of GPU for efficient memory transactions. The proposed strategies are tested with solid isotropic material with penalization (SIMP) method on four examples of 3D structural topology optimization. Results demonstrate that the proposed strategies achieve speedup up to 8.2 × over the standard GPU-based SpMV strategies from the literature.

References

1.
Bendsøe
,
M. P.
, and
Kikuchi
,
N.
,
1988
, “
Generating Optimal Topologies in Structural Design Using a Homogenization Method
,”
Comput. Methods Appl. Mech. Eng.
,
71
(
2
), pp.
197
224
.
2.
Bendsøe
,
M. P.
,
1989
, “
Optimal Shape Design as a Material Distribution Problem
,”
Struct. Optim.
,
1
(
4
), pp.
193
202
.
3.
Allaire
,
G.
,
Jouve
,
F.
, and
Toader
,
A.-M.
,
2002
, “
A Level-Set Method for Shape Optimization
,”
C. R. Math.
,
334
(
12
), pp.
1125
1130
.
4.
Ram
,
L.
, and
Sharma
,
D.
,
2017
, “
Evolutionary and GPU Computing for Topology Optimization of Structures
,”
Swarm Evolut. Comput.
,
35
, pp.
1
13
.
5.
Sharma
,
D.
,
Deb
,
K.
, and
Kishore
,
N.
,
2011
, “
Domain-Specific Initial Population Strategy for Compliant Mechanisms Using Customized Genetic Algorithm
,”
Struct. Multidiscipl. Optim.
,
43
(
4
), pp.
541
554
.
6.
Sharma
,
D.
, and
Deb
,
K.
,
2014
, “
Generation of Compliant Mechanisms Using Hybrid Genetic Algorithm
,”
J. Inst. Eng. (India): Ser. C
,
95
(
4
), pp.
295
307
.
7.
Sharma
,
D.
,
Deb
,
K.
, and
Kishore
,
N.
,
2014
, “
Customized Evolutionary Optimization Procedure for Generating Minimum Weight Compliant Mechanisms
,”
Eng. Optim.
,
46
(
1
), pp.
39
60
.
8.
Tomlin
,
M.
, and
Meyer
,
J.
,
2011
, “
Topology Optimization of an Additive Layer Manufactured (ALM) Aerospace Part
,”
Proceedings of the 7th Altair CAE Technology Conference
,
Warwickshire, UK
,
May 10
, pp.
1
9
.
9.
Zhu
,
J.-H.
,
Zhang
,
W.-H.
, and
Xia
,
L.
,
2016
, “
Topology Optimization in Aircraft and Aerospace Structures Design
,”
Arch. Comput. Methods Eng.
,
23
(
4
), pp.
595
622
.
10.
Sutradhar
,
A.
,
Paulino
,
G. H.
,
Miller
,
M. J.
, and
Nguyen
,
T. H.
,
2010
, “
Topological Optimization for Designing Patient-Specific Large Craniofacial Segmental Bone Replacements
,”
Proc. Natl. Acad. Sci. U. S. A.
,
107
(
30
), pp.
13222
13227
.
11.
Coelho
,
P. G.
,
Cardoso
,
J. B.
,
Fernandes
,
P. R.
, and
Rodrigues
,
H. C.
,
2011
, “
Parallel Computing Techniques Applied to the Simultaneous Design of Structure and Material
,”
Adv. Eng. Softw.
,
42
(
5
), pp.
219
227
.
12.
Elesin
,
Y.
,
Lazarov
,
B. S.
,
Jensen
,
J. S.
, and
Sigmund
,
O.
,
2014
, “
Time Domain Topology Optimization of 3D Nanophotonic Devices
,”
Photon. Nanostruct.-Fundam. Appl.
,
12
(
1
), pp.
23
33
.
13.
Ramírez-Gil
,
F. J.
,
Silva
,
E. C. N.
, and
Montealegre-Rubio
,
W.
,
2016
, “
Topology Optimization Design of 3D Electrothermomechanical Actuators by Using GPU as a Co-Processor
,”
Comput. Methods Appl. Mech. Eng.
,
302
, pp.
44
69
.
14.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2013
,
Topology Optimization: Theory, Methods, and Applications
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
15.
Mahdavi
,
A.
,
Balaji
,
R.
,
Frecker
,
M.
, and
Mockensturm
,
E. M.
,
2006
, “
Topology Optimization of 2D Continua for Minimum Compliance Using Parallel Computing
,”
Struct. Multidiscipl. Optim.
,
32
(
2
), pp.
121
132
.
16.
Koric
,
S.
,
Lu
,
Q.
, and
Guleryuz
,
E.
,
2014
, “
Evaluation of Massively Parallel Linear Sparse Solvers on Unstructured Finite Element Meshes
,”
Comput. Struct.
,
141
, pp.
19
25
.
17.
Sanfui
,
S.
, and
Sharma
,
D.
,
2018
, “
GPU Acceleration of Local Matrix Generation in FEA by Utilizing Sparsity Pattern
,”
1st International Conference on Mechanical Engineering (INCON 2018)
,
Kolkata, India
,
Jan. 4–6
, pp.
1
4
.
18.
Sanfui
,
S.
, and
Sharma
,
D.
,
2020
, “
A Three-Stage Graphics Processing Unit-Based Finite Element Analyses Matrix Generation Strategy for Unstructured Meshes
,”
Int. J. Numer. Methods Eng.
,
121
(
17
), pp.
3824
3848
.
19.
Sanfui
,
S.
, and
Sharma
,
D.
,
2017
, “
A Two-Kernel Based Strategy for Performing Assembly in FEA on the Graphic Processing Unit
,”
IEEE International Conference on Advances in Mechanical, Industrial, Automation and Management Systems
,
MNNIT Allahabad, India
,
Feb. 3–5
, pp.
1
9
.
20.
Kiran
,
U.
,
Sharma
,
D.
, and
Gautam
,
S. S.
,
2019
, “
GPU-WARP Based Finite Element Matrices Generation and Assembly Using Coloring Method
,”
J. Comput. Des. Eng.
,
6
(
4
), pp.
705
718
.
21.
Sanfui
,
S.
, and
Sharma
,
D.
,
2019
, “
Exploiting Symmetry in Elemental Computation and Assembly Stage of GPU-Accelerated FEA
,”
Proceedings at the 10th International Conference on Computational Methods (ICCM2019)
,
Singapore
,
July 9–13
, ScienTech, pp.
641
651
.
22.
Kiran
,
U.
,
Agrawal
,
V.
, and
Sharma
,
D.
,
2019
, “
A GPU Based Acceleration of Finite Element and Isogeometric Analysis
,”
Proceedings at the 10th International Conference on Computational Methods (ICCM2019)
,
Singapore
,
July 9–13
, ScienTech, pp.
641
651
.
23.
Kiran
,
U.
,
Gautam
,
S. S.
, and
Sharma
,
D.
,
2020
, “
GPU-Based Matrix-Free Finite Element Solver Exploiting Symmetry of Elemental Matrices
,”
Computing
,
102
(
9
), pp.
1941
1965
.
24.
Duarte
,
L. S.
,
Celes
,
W.
,
Pereira
,
A.
,
Menezes
,
I. F.
, and
Paulino
,
G. H.
,
2015
, “
Polytop++: An Efficient Alternative for Serial and Parallel Topology Optimization on CPUS & GPUS
,”
Struct. Multidiscipl. Optim.
,
52
(
5
), pp.
845
859
.
25.
Suresh
,
K.
,
2013
, “
Efficient Generation of Large-Scale Pareto-Optimal Topologies
,”
Struct. Multidiscipl. Optim.
,
47
(
1
), pp.
49
61
.
26.
Schmidt
,
S.
, and
Schulz
,
V.
,
2011
, “
A 2589 Line Topology Optimization Code Written for the Graphics Card
,”
Comput. Visual. Sci.
,
14
(
6
), pp.
249
256
.
27.
Martínez-Frutos
,
J.
, and
Herrero-Pérez
,
D.
,
2016
, “
Large-Scale Robust Topology Optimization Using Multi-GPU Systems
,”
Comput. Methods Appl. Mech. Eng.
,
311
, pp.
393
414
.
28.
Zegard
,
T.
, and
Paulino
,
G. H.
,
2013
, “
Toward GPU Accelerated Topology Optimization on Unstructured Meshes
,”
Struct. Multidiscipl. Optim.
,
48
(
3
), pp.
473
485
.
29.
Martínez-Frutos
,
J.
,
Martínez-Castejón
,
P. J.
, and
Herrero-Pérez
,
D.
,
2017
, “
Efficient Topology Optimization Using GPU Computing With Multilevel Granularity
,”
Adv. Eng. Softw.
,
106
, pp.
47
62
.
30.
Kiran
,
U.
,
Sanfui
,
S.
,
Ratnakar
,
S. K.
,
Gautam
,
S. S.
, and
Sharma
,
D.
,
2019
, “
Comparative Analysis of GPU-Based Solver Libraries for a Sparse Linear System of Equations
,”
2nd International Conference on Computational Methods in Manufacturing (ICCMM)
,
IIT Guwahati, India
,
Mar. 8–9
, Springer, pp.
889
897
.
31.
Martínez-Frutos
,
J.
,
Martínez-Castejón
,
P. J.
, and
Herrero-Pérez
,
D.
,
2015
, “
Fine-Grained GPU Implementation of Assembly-Free Iterative Solver for Finite Element Problems
,”
Comput. Struct.
,
157
, pp.
9
18
.
32.
Cecka
,
C.
,
Lew
,
A. J.
, and
Darve
,
E.
,
2011
, “
Assembly of Finite Element Methods on Graphics Processors
,”
Int. J. Numer. Methods Eng.
,
85
(
5
), pp.
640
669
.
33.
NVIDIA
,
2013
, Basic Linear Algebra Subroutines (cuBLAS) Library.
34.
Sigmund
,
O.
, and
Maute
,
K.
,
2013
, “
Topology Optimization Approaches
,”
Struct. Multidiscipl. Optim.
,
48
(
6
), pp.
1031
1055
.
35.
Wadbro
,
E.
, and
Berggren
,
M.
,
2009
, “
Megapixel Topology Optimization on a Graphics Processing Unit
,”
SIAM Rev.
,
51
(
4
), pp.
707
721
.
36.
Ratnakar
,
S. K.
,
Sanfui
,
S.
, and
Sharma
,
D.
,
2020
, “SIMP-Based Structural Topology Optimization Using Unstructured Mesh on GPU,”
Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020
,
N.
Kumar
,
S.
Tibor
,
R.
Sindhwani
,
J.
Lee
, and
P.
Srivastava
, eds.,
Springer
,
Singapore
, pp.
1
10
.
37.
Bell
,
N.
, and
Hoberock
,
J.
,
2012
,
GPU Computing Gems Jade Edition
,
Elsevier
, p.
359
.
38.
Ratnakar
,
S. K.
,
Sanfui
,
S.
, and
Sharma
,
D.
,
2020
, “GPU – Based Topology Optimization Using Matrix-Free Conjugate Gradient Finite Element Solver With Customized Nodal Connectivity Storage,”
Advances in Interdisciplinary Engineering: Select Proceedings of FLAME 2020
,
N.
Kumar
,
S.
Tibor
,
R.
Sindhwani
,
J.
Lee
, and
P.
Srivastava
, eds.,
Springer
,
Singapore
, pp.
87
97
.
39.
Sanders
,
E. D.
,
Pereira
,
A.
,
Aguiló
,
M. A.
, and
Paulino
,
G. H.
,
2018
, “
Polymat: An Efficient Matlab Code for Multi-Material Topology Optimization
,”
Struct. Multidiscipl. Optim.
,
58
(
6
), pp.
2727
2759
.
40.
Nana
,
A.
,
Cuillière
,
J.-C.
, and
Francois
,
V.
,
2016
, “
Towards Adaptive Topology Optimization
,”
Adv. Eng. Softw.
,
100
, pp.
290
307
.
You do not currently have access to this content.