Abstract

This work aims to estimate the lower-limb joint angles in the sagittal plane using Microsoft Kinect-based experimental setup and apply an efficient machine learning technique for predicting the same based on kinematic, spatiotemporal, and biological parameters. Ten healthy participants from 19 to 50 years (33 ± 11.24 years) were asked to walk in front of the Kinect camera. Based on the skeleton image, the biomechanical hip, knee, and ankle joint angles of the lower-limb were measured using ni-labview. Thereafter, two Bayesian regularization-based backpropagation multilayer perceptron neural network models were designed to predict the joint angles in the stance and swing phase. The joint angles of two individuals, as a testing dataset, were predicted and compared with the experimental results. The test correlation coefficient for predicted joint angles has shown a promising effect of the proposed neural network models. Finally, a qualitative comparison was presented between the joint angles of healthy people and unhealthy people of similar age groups.

References

1.
WHO
,
2013
, “
Ageing and Life Course
,” http://www.who.int/ageing/about/facts/en/index.html, Accessed December 29, 2019.
2.
Hausdorff
,
J. M.
,
Rios
,
D. A.
, and
Edelberg
,
H. K.
,
2001
, “
Gait Variability and Fall Risk in Community-Living Older Adults: A 1-Year Prospective Study
,”
Arch. Phys. Med. Rehabil.
,
82
(
8
), pp.
1050
1056
.
3.
Kalita
,
B.
,
Narayan
,
J.
, and
Dwivedy
,
S. K.
,
2020
, “
Development of Active Lower Limb Robotic-Based Orthosis and Exoskeleton Devices: A Systematic Review
,”
Int. J. Soc. Robot.
, pp.
1
19
.
4.
Ng
,
H.
,
Tong
,
H.-L.
,
Tan
,
W. H.
, and
Abdullah
,
J.
,
2011
, “
Improved Gait Classification With Different Smoothing Techniques
,”
Int. J. Adv. Sci. Eng. Inf. Technol.
,
1
(
3
), pp.
242
247
.
5.
Kastaniotis
,
D.
,
Theodorakopoulos
,
I.
,
Theoharatos
,
C.
,
Economou
,
G.
, and
Fotopoulos
,
S.
,
2015
, “
A Framework for Gait-Based Recognition Using Kinect
,”
Pattern Recognit. Lett.
,
68
(
2
), pp.
327
335
.
6.
Roy
,
A.
,
Sural
,
S.
, and
Mukherjee
,
J.
,
2012
, “
Gait Recognition Using Pose Kinematics and Pose Energy Image
,”
Signal Process.
,
92
(
3
), pp.
780
792
.
7.
Faisal
,
A. I.
,
Majumder
,
S.
,
Mondal
,
T.
,
Cowan
,
D.
,
Naseh
,
S.
, and
Deen
,
M. J.
,
2019
, “
Monitoring Methods of Human Body Joints: State-of-the-Art and Research Challenges
,”
Sensors
,
19
(
11
), p.
2629
.
8.
Tanaka
,
R.
,
Takimoto
,
H.
,
Yamasaki
,
T.
, and
Higashi
,
A.
,
2018
, “
Validity of Time Series Kinematical Data as Measured by a Markerless Motion Capture System on a Flatland for Gait Assessment
,”
J. Biomech.
,
71
, pp.
281
285
.
9.
Ma
,
Y.
,
Mithraratne
,
K.
,
Wilson
,
N. C.
,
Wang
,
X.
,
Ma
,
Y.
, and
Zhang
,
Y.
,
2019
, “
The Validity and Reliability of a Kinect v2-Based Gait Analysis System for Children With Cerebral Palsy
,”
Sensors
,
19
(
7
), p.
1660
.
10.
Rodrigues
,
T. B.
,
Salgado
,
D. P.
,
Catháin
,
C. Ó.
,
O’Connor
,
N.
, and
Murray
,
N.
,
2020
, “
Human Gait Assessment Using a 3D Marker-Less Multimodal Motion Capture System
,”
Multimed. Tools Appl.
,
79
(
3
), pp.
2629
2651
.
11.
Regazzoni
,
D.
,
Vitali
,
A.
,
Colombo Zefinetti
,
F.
, and
Rizzi
,
C.
,
2019
, “
Gait Analysis in the Assessment of Patients Undergoing a Total Hip Replacement
,”
ASME International Mechanical Engineering Congress and Exposition (Vol. 83518)
,
Salt Lake City, UT
,
Nov. 11–14
, American Society of Mechanical Engineers, p.
V014T14A003
.
12.
Vitali
,
A.
,
Regazzoni
,
D.
,
Rizzi
,
C.
, and
Maffioletti
,
F.
,
2019
, “
A New Approach for Medical Assessment of Patient’s Injured Shoulder
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 59179)
,
Anaheim, CA
,
Aug. 18–21
, American Society of Mechanical Engineers, p.
V001T02A049
.
13.
Abobakr
,
A.
,
Nahavandi
,
D.
,
Hossny
,
M.
,
Iskander
,
J.
,
Attia
,
M.
,
Nahavandi
,
S.
, and
Smets
,
M.
,
2019
, “
Rgb-d Ergonomic Assessment System of Adopted Working Postures
,”
Appl. Ergon.
,
80
, pp.
75
88
.
14.
Wang
,
L.
,
Sun
,
Y.
,
Li
,
Q.
,
Liu
,
T.
, and
Yi
,
J.
,
2020
, “
Two Shank-Mounted IMUs-Based Gait Analysis and Classification for Neurological Disease Patients
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
1970
1976
.
15.
Joo
,
S. B.
,
Oh
,
S. E.
,
Sim
,
T.
,
Kim
,
H.
,
Choi
,
C. H.
,
Koo
,
H.
, and
Mun
,
J. H.
,
2014
, “
Prediction of Gait Speed From Plantar Pressure Using Artificial Neural Networks
,”
Expert Syst. Appl.
,
41
(
16
), pp.
7398
7405
.
16.
Mundt
,
M.
,
Koeppe
,
A.
,
David
,
S.
,
Witter
,
T.
,
Bamer
,
F.
,
Potthast
,
W.
, and
Markert
,
B.
,
2020
, “
Estimation of Gait Mechanics Based on Simulated and Measured IMU Data Using an Artificial Neural Network
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
1
16
.
17.
Narayan
,
J.
,
Pardasani
,
A.
, and
Dwivedy
,
S. K.
,
2020
, “
Comparative Gait Analysis of Healthy Young Male and Female Adults Using Kinect-Labview Setup
,”
2020 International Conference on Computational Performance Evaluation (ComPE)
,
Shillong, India
,
July 2–4
, IEEE, pp.
688
693
.
18.
National Instruments
,
1986
, “
What Is LabVIEW?
https://www.ni.com/en-in/shop/labview.html, Accessed January 9, 2020.
19.
National Instruments
,
2018
, “
Kinesthesia Toolkit for Microsoft Kinect—University of Leeds
,” http://sine.ni.com/nips/cds/view/p/lang/en/nid/210938, Accessed January 10, 2020.
20.
Jackson
,
A. S.
,
Stanforth
,
P. R.
,
Gagnon
,
J.
,
Rankinen
,
T.
,
Leon
,
A. S.
,
Rao
,
D. C.
,
Skinner
,
J. S.
,
Bouchard
,
C.
, and
Wilmore
,
J. H.
,
2002
, “
The Effect of Sex, Age and Race on Estimating Percentage Body Fat From Body Mass Index: The Heritage Family Study
,”
Int. J. Obes.
,
26
(
6
), pp.
789
796
.
21.
Goh
,
A. T.
,
1995
, “
Back-Propagation Neural Networks for Modeling Complex Systems
,”
Artif. Intell. Eng.
,
9
(
3
), pp.
143
151
.
22.
Kayri
,
M.
,
2016
, “
Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
,”
Math. Comput. Appl.
,
21
(
2
), p.
20
.
23.
Foresee
,
F. D.
, and
Hagan
,
M. T.
,
1997
, “
Gauss–Newton Approximation to Bayesian Learning
,”
Proceedings of 3rd IEEE International Conference on Neural Networks (ICNN’97)
,
Houston, TX
,
June 12
, pp.
1930
1935
.
24.
Hagan
,
M. T.
, and
Menhaj
,
M. B.
,
1994
, “
Training Feedforward Networks With the Marquardt Algorithm
,”
IEEE Trans. Neural Networks
,
5
(
6
), pp.
989
993
.
25.
Nymark
,
J. R.
,
Balmer
,
S. J.
,
Melis
,
E. H.
,
Lemaire
,
E. D.
, and
Millar
,
S.
,
2005
, “
Electromyographic and Kinematic Nondisabled Gait Differences at Extremely Slow Overground and Treadmill Walking Speeds
,”
J. Rehabil. Res. Dev.
,
42
(
4
), pp.
523
534
.
26.
Yao
,
J.
,
Guo
,
N.
,
Xiao
,
Y.
,
Li
,
Z.
,
Li
,
Y.
,
Pu
,
F.
, and
Fan
,
Y.
,
2019
, “
Lower-Limb Joint Motion and Muscle Force in Treadmill and Over-Ground Exercise
,”
Biomed. Eng. Online
,
18
(
1
), pp.
1
12
.
27.
Kautz
,
S. A.
,
Bowden
,
M. G.
,
Clark
,
D. J.
, and
Neptune
,
R. R.
,
2011
, “
Comparison of Motor Control Deficits During Treadmill and Overground Walking Poststroke
,”
Neurorehabil. Neural Repair
,
25
(
8
), pp.
756
765
.
28.
Boudarham
,
J.
,
Roche
,
N.
,
Pradon
,
D.
,
Bonnyaud
,
C.
,
Bensmail
,
D.
, and
Zory
,
R.
,
2013
, “
Variations in Kinematics During Clinical Gait Analysis in Stroke Patients
,”
PLoS One
,
8
(
6
), p.
e66421
.
29.
Sun
,
T.
,
Li
,
H.
,
Liu
,
Q.
,
Duan
,
L.
,
Li
,
M.
,
Wang
,
C.
,
Liu
,
Q.
,
Li
,
W.
,
Shang
,
W.
,
Wu
,
Z.
, and
Wang
,
Y.
,
2017
, “
Inertial Sensor-Based Motion Analysis of Lower-Limbs for Rehabilitation Treatments
,”
J. Healthcare Eng.
,
2017
, pp.
1
12
.
You do not currently have access to this content.