Abstract

Many additive manufacturing (AM) processes are driven by a moving heat source. Thermal field evolution during the manufacturing process plays an important role in determining both geometric and mechanical properties of the fabricated parts. Thermal simulation of AM processes is challenging due to the geometric complexity of the manufacturing process and inherent computational complexity that requires a numerical solution at every time increment of the process. We propose a new general computational framework that supports scalable thermal simulation at path scale of any AM process driven by a moving heat source. The proposed framework has three novel ingredients. First, the path-level discretization is process-aware, which is based on the manufacturing primitives described by the scan path and the thermal model that is formulated directly in terms of manufacturing primitives. Second, a spatial data structure, called contact graph, is used to represent the discretized domain and capture all expected thermal interactions during the simulation. Finally, the simulation is localized based on specific physical parameters of the manufacturing process, requiring at most a constant number of updates at each time-step. The latter implies that the constructed simulation not only scales to handle three-dimensional (3D) printed components of arbitrary complexity but also can achieve real-time performance. To demonstrate the efficacy and generality of the framework, it has been successfully applied to build thermal simulations of two different AM processes: fused deposition modeling and powder bed fusion.

References

1.
Ngo
,
T. D.
,
Kashani
,
A.
,
Imbalzano
,
G.
,
Nguyen
,
K. T.
, and
Hui
,
D.
,
2018
, “
Additive Manufacturing (3d Printing): A Review of Materials, Methods, Applications and Challenges
,”
Compos. Part B: Eng.
,
143
, pp.
172
196
.
2.
Michopoulos
,
J. G.
,
Lambrakos
,
S.
, and
Iliopoulos
,
A.
,
2014
, “
Multiphysics Challenges for Controlling Layered Manufacturing Processes Targeting Thermomechanical Performance
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
.
3.
Yan
,
W.
,
Smith
,
J.
,
Ge
,
W.
,
Lin
,
F.
, and
Liu
,
W. K.
,
2015
, “
Multiscale Modeling of Electron Beam and Substrate Interaction: A New Heat Source Model
,”
Comput. Mech.
,
56
(
2
), pp.
265
276
.
4.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3d FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
117
123
.
5.
Ganeriwala
,
R.
, and
Zohdi
,
T. I.
,
2016
, “
A Coupled Discrete Element-Finite Difference Model of Selective Laser Sintering
,”
Granular Matter
,
18
(
2
), p.
21
.
6.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2016
, “
Discrete Element Modeling of Particle-Based Additive Manufacturing Processes
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
537
561
.
7.
Zhang
,
Y.
, and
Shapiro
,
V.
,
2018
, “
Linear-Time Thermal Simulation of As-Manufactured Fused Deposition Modeling Components
,”
ASME J. Manuf. Sci. Eng.
,
140
(
7
), p.
071002
.
8.
Tang
,
M.
,
Pistorius
,
P. C.
, and
Beuth
,
J. L.
,
2017
, “
Prediction of Lack-of-Fusion Porosity for Powder Bed Fusion
,”
Addit. Manuf.
,
14
, pp.
39
48
.
9.
Liu
,
X.
, and
Shapiro
,
V.
,
2016
, “
Homogenization of Material Properties in Additively Manufactured Structures
,”
Comput. Aided Des.
,
78
, pp.
71
82
.
10.
Olleak
,
A.
, and
Xi
,
Z.
,
2020
, “
Part-Scale Finite Element Modeling of the Selective Laser Melting Process With Layer-Wise Adaptive Remeshing for Thermal History and Porosity Prediction
,”
ASME J. Manuf. Sci. Eng.
,
142
(
12
), p.
121006
.
11.
Thomas
,
J.
, and
Rodríguez
,
J.
,
2000
, “
Modeling the Fracture Strength Between Fused-Deposition Extruded Roads
,”
International Solid Freeform Fabrication Symposium
,
Austin, TX
,
Aug. 8–10
.
12.
Bellehumeur
,
C.
,
Li
,
L.
,
Sun
,
Q.
, and
Gu
,
P.
,
2004
, “
Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process
,”
J. Manuf. Process.
,
6
(
2
), pp.
170
178
.
13.
Sun
,
Q.
,
Rizvi
,
G.
,
Bellehumeur
,
C.
, and
Gu
,
P.
,
2008
, “
Effect of Processing Conditions on the Bonding Quality of FDM Polymer Filaments
,”
Rapid Prototyp. J.
,
14
(
2
), pp.
72
80
.
14.
Costa
,
S.
,
Duarte
,
F.
, and
Covas
,
J.
,
2008
, “
Towards Modelling of Free Form Extrusion: Analytical Solution of Transient Heat Transfer
,”
Int. J. Mater. Form.
,
1
(
1
), pp.
703
706
.
15.
Costa
,
S.
,
Duarte
,
F.
, and
Covas
,
J.
,
2015
, “
Thermal Conditions Affecting Heat Transfer in FDM/FFE: A Contribution Towards the Numerical Modelling of the Process: This Paper Investigates Convection, Conduction and Radiation Phenomena in the Filament Deposition Process
,”
Virtual Phys. Prototyp.
,
10
(
1
), pp.
35
46
.
16.
Devesse
,
W.
,
De Baere
,
D.
, and
Guillaume
,
P.
,
2014
, “
The Isotherm Migration Method in Spherical Coordinates With a Moving Heat Source
,”
Int. J. Heat Mass Transfer
,
75
, pp.
726
735
.
17.
Lopez
,
F.
,
Witherell
,
P.
, and
Lane
,
B.
,
2016
, “
Identifying Uncertainty in Laser Powder Bed Fusion Models
,”
ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
.
18.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2019
, “
Phase Transformation Advancements of the Enriched Analytic Solution Method for Additive Manufacturing Applications
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, Vol. 59179, American Society of Mechanical Engineers, p. V001T02A035.
19.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Michopoulos
,
J. G.
, and
Iliopoulos
,
A. P.
,
2019
, “
Enriched Analytical Solutions for Additive Manufacturing Modeling and Simulation
,”
Addit. Manuf.
,
25
, pp.
437
447
.
20.
Steuben
,
J. C.
,
Birnbaum
,
A. J.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2019
, “
Toward Feedback Control for Additive Manufacturing Processes Via Enriched Analytical Solutions
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
3
), p.
031009
.
21.
Zhang
,
Y.
, and
Chou
,
Y.
,
2006
, “
Three-Dimensional Finite Element Analysis Simulations of the Fused Deposition Modelling Process
,”
Proc. Inst. Mech. Eng. B
,
220
(
10
), pp.
1663
1671
22.
Ji
,
L. B.
, and
Zhou
,
T. R.
,
2010
, “
Finite Element Simulation of Temperature Field in Fused Deposition Modeling
,”
Adv. Mater. Res
,
97
, pp.
2585
2588
.
23.
Krishnakumar
,
A.
,
Suresh
,
K.
, and
Chandrasekar
,
A.
,
2015
, “
Towards Assembly-Free Methods for Additive Manufacturing Simulation
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 2–5
.
24.
Yan
,
W.
,
Lin
,
S.
,
Kafka
,
O. L.
,
Lian
,
Y.
,
Yu
,
C.
,
Liu
,
Z.
,
Yan
,
J.
,
Wolff
,
S.
,
Wu
,
H.
,
Ndip-Agbor
,
E.
,
Mozaffar
,
M.
,
Ehmann
,
K.
,
Cao
,
J.
,
Wagner
,
G.
, and
Liu
,
W.
,
2018
, “
Data-Driven Multi-Scale Multi-Physics Models to Derive Process–Structure–Property Relationships for Additive Manufacturing
,”
Comput. Mech.
,
61
(
5
), pp.
521
541
.
25.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.
26.
Favoretto
,
B.
,
De Hillerin
,
C.
,
Bettinotti
,
O.
,
Oancea
,
V.
, and
Barbarulo
,
A.
,
2019
, “
Reduced Order Modeling Via PGD for Highly Transient Thermal Evolutions in Additive Manufacturing
,”
Comput. Methods Appl. Mech. Eng.
,
349
, pp.
405
430
.
27.
Michopoulos
,
J. G.
,
Dennis
,
B.
,
Komninelli
,
F.
,
Iliopoulos
,
A.
, and
Akbariyeh
,
A.
,
2014
, “
Performance of Reduced Order Models of Moving Heat Source Deposition Problems for Efficient Inverse Analysis
,”
ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, American Society of Mechanical Engineers Digital Collection.
28.
Dennis
,
B. H.
,
Akbariyeh
,
A.
,
Michopoulos
,
J.
,
Komninelli
,
F.
, and
Iliopoulos
,
A.
,
2014
, “
Inverse Determination of Moving Heat Flux Distributions Using Reduced Order Models
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Buffalo, NY
,
Aug. 17–20
, American Society of Mechanical Engineers Digital Collection, p. V01AT02A026.
29.
Körner
,
C.
,
Bauereiß
,
A.
, and
Attar
,
E.
,
2013
, “
Fundamental Consolidation Mechanisms During Selective Beam Melting of Powders
,”
Modell. Simul. Mater. Sci. Eng.
,
21
(
8
), p.
085011
.
30.
Khairallah
,
S. A.
,
Anderson
,
A. T.
,
Rubenchik
,
A.
, and
King
,
W. E.
,
2016
, “
Laser Powder-Bed Fusion Additive Manufacturing: Physics of Complex Melt Flow and Formation Mechanisms of Pores, Spatter, and Denudation Zones
,”
Acta Mater.
,
108
, pp.
36
45
.
31.
King
,
W.
,
Anderson
,
A. T.
,
Ferencz
,
R. M.
,
Hodge
,
N. E.
,
Kamath
,
C.
, and
Khairallah
,
S. A.
,
2015
, “
Overview of Modelling and Simulation of Metal Powder Bed Fusion Process at Lawrence Livermore National Laboratory
,”
Mater. Sci. Technol.
,
31
(
8
), pp.
957
968
.
32.
Qiu
,
C.
,
Panwisawas
,
C.
,
Ward
,
M.
,
Basoalto
,
H. C.
,
Brooks
,
J. W.
, and
Attallah
,
M. M.
,
2015
, “
On the Role of Melt Flow Into the Surface Structure and Porosity Development During Selective Laser Melting
,”
Acta Mater.
,
96
, pp.
72
79
.
33.
Yan
,
W.
,
Ge
,
W.
,
Qian
,
Y.
,
Lin
,
S.
,
Zhou
,
B.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2017
, “
Multi-Physics Modeling of Single/Multiple-Track Defect Mechanisms in Electron Beam Selective Melting
,”
Acta Mater.
,
134
, pp.
324
333
.
34.
Yan
,
W.
,
Qian
,
Y.
,
Ge
,
W.
,
Lin
,
S.
,
Liu
,
W. K.
,
Lin
,
F.
, and
Wagner
,
G. J.
,
2018
, “
Meso-Scale Modeling of Multiple-Layer Fabrication Process in Selective Electron Beam Melting: Inter-Layer/Track Voids Formation
,”
Mater. Des.
,
141
, pp.
210
219
.
35.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
,
Birnbaum
,
A. J.
, and
Lambrakos
,
S. G.
,
2018
, “
On the Multiphysics Modeling Challenges for Metal Additive Manufacturing Processes
,”
Addit. Manuf.
,
22
, pp.
784
799
.
36.
Zohdi
,
T. I.
,
2014
, “
Additive Particle Deposition and Selective Laser Processing—A Computational Manufacturing Framework
,”
Comput. Mech.
,
54
(
1
), pp.
171
191
.
37.
Zohdi
,
T.
,
2014
, “
A Direct Particle-Based Computational Framework for Electrically Enhanced Thermo-Mechanical Sintering of Powdered Materials
,”
Math. Mech. Solids
,
19
(
1
), pp.
93
113
.
38.
Cattenone
,
A.
,
Morganti
,
S.
, and
Auricchio
,
F.
,
2019
, “
Basis of the Lattice Boltzmann Method for Additive Manufacturing
,”
Arch. Comput. Methods Eng.
,
27
(
4
), pp.
1109
1133
.
39.
Incropera
,
F. P.
,
Lavine
,
A. S.
,
Bergman
,
T. L.
, and
DeWitt
,
D. P.
,
2007
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
40.
Zhang
,
Y.
,
Shapiro
,
V.
, and
Witherell
,
P.
,
2019
, “
Towards Thermal Simulation of Powder Bed Fusion on Path Level
,”
ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Anaheim, CA
,
Aug. 18–21
, American Society of Mechanical Engineers Digital Collection.
41.
Zhang
,
Y.
,
2020
, “
A Scalable Framework for Contact-Aware Thermal Simulation of Additive Manufacturing Processes
,”
PhD thesis
,
The University of Wisconsin-Madison
,
Madison, WI
.
42.
Zhang
,
Y.
,
Shapiro
,
V.
, and
Witherell
,
P.
,
2020
, “
Scalable Thermal Simulation of Powder Bed Fusion
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Virtual Online
,
Aug. 17–19
, American Society of Mechanical Engineers Digital Collection.
43.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Directed Energy Deposition Processes
,
Springer
,
New York
, pp.
245
268
.
You do not currently have access to this content.