Abstract

Squeak and rattle are annoying sounds that are often regarded as failure indicators by car users. Geometric variation is a key contributor to the generation of squeak and rattle sounds. Optimization of the connection configuration in assemblies can be a provision to minimize this risk. However, the optimization process for large assemblies can be computationally expensive. The focus of this work is to propose a two-stage evolutionary optimization scheme to find the fittest connection configurations that minimize the risk for squeak and rattle. This was done by defining the objective functions as the measured variation and deviation in the rattle direction and the squeak plane. In the first stage, the location of the fasteners primarily contributing to the rattle direction measures is identified. In the second stage, fasteners primarily contributing to the squeak plane measures are added to the fittest configuration from phase one. It was assumed that the fasteners from the squeak group plane have a lower-order effect on the rattle direction measures, compared to the fasteners from the rattle direction group. This assumption was falsified for a set of simplified geometries. Also, a new uniform space filler algorithm was introduced to efficiently generate an inclusive and feasible starting population for the optimization process by incorporating the problem constraints in the algorithm. For two industrial cases, it was shown that by using the proposed two-stage optimization scheme, the variation and deviation measures in critical interfaces for squeak and rattle improved compared to the baseline results.

References

1.
Trapp
,
M.
, and
Chen
,
F.
,
2012
,
Automotive Buzz, Squeak and Rattle: Mechanisms, Analysis, Evaluation and Prevention
,
Butterworth-Heinemann/Elsevier
.
2.
Wärmefjord
,
K.
,
Söderberg
,
R.
, and
Lindkvist
,
L.
,
2013
, “
Simulation of the Effect of Geometrical Variation on Assembly and Holding Forces
,”
Int. J. Prod. Dev.
,
18
(
1
), p.
88
.
3.
Söderberg
,
R.
,
Wärmefjord
,
K.
,
Lindkvist
,
L.
, and
Berlin
,
R.
,
2012
, “
The Influence of Spot Weld Position Variation on Geometrical Quality
,”
CIRP Ann.
,
61
(
1
), pp.
13
16
.
4.
Gosavi
,
S. S.
Automotive Buzz, Squeak and Rattle (BSR) Detection and Prevention
,” SAE Technical Papers, 2005, vol. 2005-Janua, no. January.
5.
Söderberg
,
R.
,
Lindkvist
,
L.
,
Wärmefjord
,
K.
, and
Carlson
,
J. S.
,
2016
, “
Virtual Geometry Assurance Process and Toolbox
,”
Procedia CIRP
,
43
(
1
), pp.
3
12
.
6.
Cai
,
W.
,
2008
, “
Fixture Optimization for Sheet Panel Assembly Considering Welding gun Variations
,”
Proc. Inst. Mech. Eng., Part C
,
222
(
2
), pp.
235
246
.
7.
Charles Liu
,
S.
, and
Jack Hu
,
S.
,
1997
, “
Variation Simulation for Deformable Sheet Metal Assemblies Using Finite Element Methods
,”
ASME J. Manuf. Sci. Eng.
,
119
(
3
), pp.
368
374
.
8.
Dahlström
,
S.
, and
Lindkvist
,
L.
,
2007
, “
Variation Simulation of Sheet Metal Assemblies Using the Method of Influence Coefficients with Contact Modeling
,”
Trans. ASME J. Manuf. Sci. Eng.
,
129
(
3
), pp.
615
622
.
9.
Benhayoun
,
I.
,
Bonin
,
F.
,
de Faverges
,
A.
, and
Masson
,
J.
,
2017
, “
Simulation and Optimization Driven Design Process for S&R Problematic—PSA Peugeot Citroën Application for Interior Assembly
,”
Noise and Vibration Conference and Exhibition.
,
Grand Rapids, MI
,
June 12
.
10.
Söderberg
,
R.
, and
Lindkvist
,
L.
,
1999
, “
Computer Aided Assembly Robustness Evaluation
,”
J. Eng. Des.
,
10
(
2
), pp.
165
181
.
11.
Shen
,
Z.
,
Ameta
,
G.
,
Shah
,
J. J.
, and
Davidson
,
J. K.
,
2005
, “
A Comparative Study of Tolerance Analysis Methods
,”
ASME J. Comput. Inf. Sci. Eng.
,
5
(
3
), pp.
247
256
.
12.
Cao
,
Y.
,
Liu
,
T.
, and
Yang
,
J.
,
2018
, “
A Comprehensive Review of Tolerance Analysis Models
,”
Int. J. Adv. Manuf. Technol.
,
97
(
5–8
), pp.
3055
3085
.
13.
Morse
,
E.
,
Dantan
,
J.-Y.
,
Anwer
,
N.
,
Söderberg
,
R.
,
Moroni
,
G.
,
Qureshi
,
A.
,
Jiang
,
X.
, and
Mathieu
,
L.
,
2018
, “
Tolerancing: Managing Uncertainty From Conceptual Design to Final Product
,”
CIRP Ann.
,
67
(
2
), pp.
695
717
.
14.
Desrochers
,
A.
, and
Maranzana
,
R.
,
1996
, “Constrained Dimensioning and Tolerancing Assistance for Mechanisms,”
Computer-Aided Tolerancing
,
Springer
,
Netherlands
, pp.
17
30
.
15.
Jaballi
,
K.
,
Bellacicco
,
A.
,
Louati
,
J.
,
Riviere
,
A.
, and
Haddar
,
M.
,
2011
, “
Rational Method for 3D Manufacturing Tolerancing Synthesis Based on the TTRS Approach ‘r3DMTSyn,’
,”
Comput. Ind.
,
62
(
5
), pp.
541
554
.
16.
Desrochers
,
A.
, and
Rivière
,
A.
,
1997
, “
A Matrix Approach to the Representation of Tolerance Zones and Clearances
,”
Int. J. Adv. Manuf. Technol.
,
13
(
9
), pp.
630
636
.
17.
Gupta
,
S.
, and
Turner
,
J. U.
,
1993
, “
Variational Solid Modeling for Tolerance Analysis
,”
IEEE Comput. Graph. Appl.
,
13
(
3
), pp.
64
74
.
18.
Chase
,
K. W.
,
Gao
,
J.
,
Magleby
,
S. P.
, and
Sorensen
,
C. D.
,
1996
, “
Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies
,”
IIE Trans.
,
28
(
10
), pp.
795
807
.
19.
Davidson
,
J. K.
,
Mujezinović
,
A.
, and
Shah
,
J. J.
,
2002
, “
A new Mathematical Model for Geometric Tolerances as Applied to Round Faces
,”
Trans. ASME J. Mech. Des.
,
124
(
4
), pp.
609
622
.
20.
Giordano
,
M.
,
Samper
,
S.
, and
Petit
,
J. P.
,
2007
, “
Tolerance Analysis and Synthesis by Means of Deviation Domains, Axi-Symmetric Cases
,”
Models for Computer Aided Tolerancing in Design and Manufacturing—Selected Conference Papers From the 9th CIRP International Seminar on Computer-Aided Tolerancing, CAT 2005
, pp.
85
94
.
21.
Clément
,
A.
,
Desrochers
,
A.
, and
Rivière
,
A.
,
1991
, “
Theory and Practice of 3-D Tolerancing for Assembly
,”
Proceedings of 2nd CIRP Conference on Computer Aided Tolerancing
,
Linköping, Sweden
,
Apr. 14–15
.
22.
Bourdet
,
P.
,
Mathieu
,
L.
,
Lartigue
,
C.
, and
Ballu
,
A.
,
1996
, “
The Concept of the Small Displacement Torsor in Metrology
,”
Series on Advances in Mathematics for Applied Sciences
,
40
(
1
), pp.
110
122
.
23.
Morse
,
E. P.
,
2000
, “
Models, Representations, and Analyses of Toleranced One-Dimensional Assemblies
,”
Cornell University
.
24.
Morse
,
E. P.
, and
You
,
X.
,
2005
, “
Implementation of Gapspace Analysis
,”
ASME Des. Eng. Div.
,
118 A
(
1
), pp.
329
334
.
25.
Mathieu
,
L.
, and
Ballu
,
A.
,
2007
, “
A Model for a Coherent and Complete Tolerancing Process
,”
Models for Computer Aided Tolerancing in Design and Manufacturing—Selected Conference Papers From the 9th CIRP International Seminar on Computer-Aided Tolerancing, CAT 2005
,
Tempe, AZ
,
Apr. 10
, pp.
35
44
.
26.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2014
, “
Skin Model Shapes: A new Paradigm Shift for Geometric Variations Modelling in Mechanical Engineering
,”
CAD Comput. Aided Des.
,
50
(
1
), pp.
1
15
.
27.
Cai
,
W.
,
Hu
,
S. J.
, and
Yuan
,
J. X.
,
1996
, “
Deformable Sheet Metal Fixturing: Principles, Algorithms, and Simulations
,”
ASME J. Manuf. Sci. Eng.
,
118
(
3
), pp.
318
324
.
28.
Gao
,
J.
,
Chase
,
K. W.
, and
Magleby
,
S. P.
,
1998
, “
Generalized 3-D Tolerance Analysis of Mechanical Assemblies with Small Kinematic Adjustments
,”
IIE Trans.
,
30
(
4
), pp.
367
377
.
29.
Lindau
,
B.
,
Lorin
,
S.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2016
, “
Efficient Contact Modeling in Nonrigid Variation Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
1
), p.
011002
.
30.
Huang
,
W.
,
2013
, “
Sample Size Determination in NT-Net Quasi-Monte Carlo Simulation
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
3
), p.
034501
.
31.
Corrado
,
A.
, and
Polini
,
W.
,
2018
, “
FEA Integration in the Tolerance Analysis Using Skin Model Shapes
,”
Procedia CIRP
,
75
(
1
), pp.
285
290
.
32.
Franciosa
,
P.
,
Gerbino
,
S.
, and
Ceglarek
,
D.
,
2016
, “
Fixture Capability Optimisation for Early-Stage Design of Assembly System with Compliant Parts Using Nested Polynomial Chaos Expansion
,”
Procedia CIRP
,
41
(
1
), pp.
87
92
.
33.
Luo
,
C.
,
Franciosa
,
P.
,
Ceglarek
,
D.
,
Ni
,
Z.
, and
Jia
,
F.
,
2018
, “
A Novel Geometric Tolerance Modeling Inspired by Parametric Space Envelope
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
3
), pp.
1386
1398
.
34.
RD&T Software Manual,” RD&T Technology AB, Molndal, Sweden, 2019.
35.
Lööf
,
J.
,
Lindkvist
,
L.
, and
Söderberg
,
R.
,
2009
, “
Optimizing Locator Position to Maximize Robustness in Critical Product Dimensions
,”
Volume 2: 29th Computers and Information in Engineering Conference, Parts A and B
,
San Diego, CA
,
Aug. 30
, pp.
515
522
.
36.
Daams
,
H.
,
2009
, “
Squeak and Rattle Prevention in the Design Phase Using a Pragmatic Approach
,”
SIAT 2009.
,
Pune, India
,
Jan. 21
.
37.
Ölvander
,
J.
,
2000
,
A Survey of Multiobjective Optimization in Engineering Design
,
x
,
Linköping
.
38.
Coello
,
C. A.
,
Lamont
,
G. B.
, and
Van Veldhuisen
,
D. A.
,
2007
,
Evolutionary Algorithms for Solving Multi-Objective Problems
, 2nd ed.,
Springer
,
New York
.
39.
Fonseca
,
C. M.
, and
Fleming
,
P. J.
,
1993
, “
Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization
,”
Proceedings of the Fifth International Conference on Genetic Algorithms
,
San Mateo, CA
,
July
, pp.
416
423
.
40.
Goldberg
,
D. E.
,
1989
,
Genetic Algorithms in Search, Optimization and Machine Learning
, 1st ed.,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston
.
41.
Pronzato
,
L.
, and
Müller
,
W.
,
2012
, “
Design of Computer Experiments: Space Filling and Beyond
,”
Stat. Comput.
,
22
(
3
), pp.
681
701
.
42.
Santner
,
T. J.
,
Williams
,
B. J.
, and
Notz
,
W. I.
,
2003
,
The Design and Analysis of Computer Experiments
, 1st ed.,
Springer New York
,
New York, NY
.
43.
Fang
,
K.-T.
,
Liu
,
M.-Q.
,
Qin
,
H.
, and
Zhou
,
Y.-D.
,
2018
,
Theory and Application of Uniform Experimental Designs
, 1st ed., Vol.
221
,
Springer Singapore
,
Singapore
.
44.
Rigoni
,
E.
, and
Turco
,
A.
,
2010
, “
Metamodels for Fast Multi-Objective Optimization: Trading off Global Exploration and Local Exploitation
,”
8th International Conference on Simulated Evolution and Learning
,
Kanpur, India
,
Dec. 1
, Vol.
6457
, LNCS, pp.
523
532
.
45.
Kucherenko
,
S.
,
Albrecht
,
D.
, and
Saltelli
,
A.
,
2015
, “
Exploring Multi-Dimensional Spaces: A Comparison of Latin Hypercube and Quasi Monte Carlo Sampling Techniques
,”
ArXiv
– University of Cornell (USA). http://arxiv.org/abs/1505.02350
46.
Dette
,
H.
, and
Pepelyshev
,
A.
,
2010
, “
Generalized Latin Hypercube Design for Computer Experiments
,”
Technometrics
,
52
(
4
), pp.
421
429
.
47.
Niederreiter
,
H.
,
1992
,
Random Number Generation and Quasi-Monte Carlo Methods
, 1st ed.,
Society for Industrial and Applied Mathematics
,
Philadelphia
.
You do not currently have access to this content.