Abstract

Swarm intelligence-based optimization algorithms show great success to solve complex problems with high efficiency. Recently, a novel and heuristic algorithm, Bat searching algorithm (BA) has been proposed. Moreover, numerical evaluation has already demonstrated the better performance of BA compared with other algorithms variations. In this paper, we propose a coupled spring forced BA (SFBA) algorithm by considering that each particle is a spring and is coupled with the optimal solution found so far as the second abstract spring. The synergistic integration of the coupled springs, the bat’s behavior, and swarm intelligence governs and navigates the new algorithm in the searching process. Moreover, the convergence of the SFBA is studied via Jury’s Test. Numerical evaluation is provided for the proposed SFBA algorithm by conducting comparison with other variations of BA in the literature, which indicates that the performance of SFBA surpasses all the listed variations of BA significantly. Moreover, the proposed SFBA is applied so solve a large-scale energy resource management in uncertain environments, and the results are numerically compared with other BA algorithms.

References

1.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of IEEE International Conference on Neural Networks
,
Perth, Australia
, pp.
1942
1948
.
2.
Zhang
,
H.
, and
Hui
,
Q.
,
2013
, “
A New Hybrid Swarm Optimization Algorithm for Power System Vulnerability Analysis and Sensor Network Deployment
,”
2013 International Joint Conference Neural Networks
,
Dallas, TX, Aug. 4–9
, pp.
1221
1228
.
3.
Tang
,
Y.
,
Luo
,
X.
,
Hui
,
Q.
, and
Chang
,
R. K. C.
,
2009
, “
On Generalized Low-Rate Denial-of-Quality Attack Against Internet Services
,”
17th International Workshop Quality of Service
,
Charleston, SC, July 13–15
.
4.
Yang
,
X.-S.
,
2010
,
A New Metaheuristic Bat-Inspired Algorithm
,
Springer
, pp.
65
74
.
5.
Jayabarathi
,
T.
,
Raghunathan
,
T.
, and
Gandomi
,
A.
,
2018
,
The Bat Algorithm, Variants and Some Practical Engineering Applications: A Review
,
Springer
, pp.
313
330
.
6.
Gupta
,
S.
,
Kumar
,
N.
, and
Srivastava
,
L.
,
2019
,
Bat Search Algorithm for Solving Multi-objective Optimal Power Flow Problem
,
Springer
, pp.
347
362
.
7.
Sujatha
,
G.
, and
Balaji
,
N.
,
2019
, “
Performance and Area Optimization of VLSI Floorplanning Systems Using Optimization in Bat Algorithms
,”
Int. J. App. Eng. Res.
,
14
(
6
), pp.
1400
1404
.
8.
Sureshkumar
,
K.
, and
Ponnusamy
,
V.
,
2019
, “
Power Flow Management in Micro Grid Through Renewable Energy Sources Using a Hybrid Modified Dragonfly Algorithm With Bat Search Algorithm
,”
Energy
,
181
(
15
), pp.
1166
1178
.
9.
Tang
,
H.
,
Sun
,
W.
,
Yu
,
H.
,
Lin
,
A.
, and
Xue
,
M.
,
2019
, “
A Multirobot Target Searching Method Based on Bat Algorithm in Unknown Environments
,”
Expert. Syst. Appl.
,
141
(
1
), p.
112945
.
10.
Gupta
,
D.
,
Arora
,
J.
,
Agrawal
,
U.
,
Khanna
,
A.
, and
de Albuquerque
,
V. H. C.
,
2019
, “
Optimized Binary Bat Algorithm for Classification of White Blood Cells
,”
Measurement
,
143
, pp.
180
190
.
11.
Meng
,
X.-B.
,
Gao
,
X. Z.
,
Liu
,
Y.
, and
Zhang
,
H.
,
2015
, “
A Novel Bat Algorithm With Habitat Selection and Doppler Effect in Echoes for Optimization
,”
Expert. Syst. Appl.
,
42
(
17–18
), pp.
6350
6364
.
12.
Gan
,
C.
,
Cao
,
W.
,
Wu
,
M.
, and
Chen
,
X.
,
2018
, “
A New Bat Algorithm Based on Iterative Local Search and Stochastic Inertia Weight
,”
Expert. Syst. Appl.
,
104
, pp.
202
212
.
13.
Zhang
,
H.
, and
Hui
,
Q.
,
2017
, “
Cooperative Bat Searching Algorithm: A Combined Perspective From Multiagent Coordination and Swarm Intelligence
,”
IEEE Conference on Automation Science and Engineering
,
Xi'an, China
, pp.
1362
1367
.
14.
Mirjalili
,
S.
,
Mirjalili
,
S. M.
, and
Yang
,
X.-S.
,
2014
, “
Binary Bat Algorithm
,”
Neural Comput. Appl.
,
25
(
3–4
), pp.
663
681
.
15.
Kang
,
M.
,
Kim
,
J.
, and
Kim
,
J.-M.
,
2015
, “
Reliable Fault Diagnosis for Incipient Low-Speed Bearings Using Fault Feature Analysis Based on a Binary Bat Algorithm
,”
Inf. Sci.
,
294
(
10
), pp.
423
438
.
16.
Sabba
,
S.
, and
Chikhi
,
S.
,
2014
, “
A Discrete Binary Version of Bat Algorithm for Multidimensional Knapsack Problem
,”
Int. J. Bio-Inspired Comput.
,
6
(
2
), pp.
140
152
.
17.
Zhang
,
H.
,
2019
, “
A Binary Cooperative Bat Algorithm Based Optimal Topology Design of Leader-Follower Consensus
,”
ISA Trans
,
96
, pp.
51
59
.
18.
Tuba
,
M.
, and
Bacanin
,
N.
,
2015
, “
Hybridized Bat Algorithm for Multi-Objective Radio Frequency Identification (RFID) Network Planning
,”
2015 IEEE Congress on Evolutionary Computation (CEC)
,
Sendai, Japan
, pp.
499
506
.
19.
Tharakeshwar
,
T.
,
Seetharamu
,
K.
, and
Prasad
,
B. D.
,
2017
, “
Multi-Objective Optimization Using Bat Algorithm for Shell and Tube Heat Exchangers
,”
Appl. Therm. Eng.
,
110
(
5
), pp.
1029
1038
.
20.
Zhang
,
H.
, and
Hui
,
Q.
,
2019
, “
Many Objective Cooperative Bat Searching Algorithm
,”
Appl. Soft. Comput.
,
77
, pp.
412
437
.
21.
Fay
,
T. H.
, and
Graham
,
S. D.
,
2003
, “
Coupled Spring Equations
,”
Int. J. Math. Edu. Sci. Technol.
,
34
(
1
), pp.
65
79
.
22.
Ogata
,
K.
,
1995
,
Discrete-Time Control Systems
, 2nd ed.,
Prentice-Hall
,
NJ
.
23.
Jiao
,
B.
,
Lian
,
Z.
, and
Gu
,
X.
,
2008
, “
A Dynamic Inertia Weight Particle Swarm Optimization Algorithm
,”
Chaos, Solitons Fract.
,
37
(
3
), pp.
698
705
.
24.
Li
,
X.
,
Tang
,
K.
,
Omidvar
,
M. N.
,
Yang
,
Z.
, and
Qin
,
K.
,
2013 [Online]
, “
Benchmark Functions for the CEC’2013 Special Session and Competition on Large-Scale Global Optimization
,” Technical Report, Evolut. Comput. Machine Learning Group, RMIT University, Melbourne, Australia. Available at https://www.researchgate.net/profile/Mohammmad_Nabi_Omidvar/publication/261562928_Benchmark_Functions_for_the_CEC'2013_Special_Session_and_Competition_on_Large-Scale_Global_Optimization/links/0f317534b78b3241dd000000/Benchmark-Functions-for-the-CEC2013-Special-Session-and-Competition-on-Large-Scale-Global-Optimization.pdf.
25.
Lezama
,
F.
,
Soares
,
J.
,
Vale
,
Z.
, and
Rueda
,
J.
,
2018
, “
Guidelines for the CEC & GECCO 2019 Competition on Evolutionary Computation in Uncertain Environments: A Smart Grid Application
.”
26.
Lezama
,
F.
,
Soares
,
J.
,
Vale
,
Z.
,
Rueda
,
J.
,
Rivera
,
S.
, and
Elrich
,
I.
,
2019
, “
2017 IEEE Competition on Modern Heuristic Optimizers for Smart Grid Operation: Testbeds and Results
,”
Swarm Evol. Comput.
,
44
, pp.
420
427
.
27.
Lezama
,
F.
,
Soares
,
J.
,
Vale
,
Z.
, and
Rueda
,
J.
,
2018
, “
SG-ERM-Uncertainty Framework
.”
You do not currently have access to this content.