Abstract

Valves are crucial components of a hydraulic system that enable reliable fluid management. Hydraulic valves actuated by a solenoid are prone to degradation in their switching behavior, which may induce undesirable fluctuations in the fluid pressure and flow rate, thereby impairing the system performance and limiting its predictability and reliability. Therefore, it is imperative to monitor the switching behavior of solenoid-actuated hydraulic valves. First, recurrence quantification analysis (RQA) has been applied to the experimental flow signals from a hydraulic circuit to understand the complex switching behavior of the valve. Using RQA, the monotonicity of six recurrence-based parameters has been assessed. In addition, two more nonlinear features, namely, Higuchi and Katz fractal dimensions have been extracted from the flow signals. Based on these eight features (six RQA-derived features and two nonlinear features) a feature matrix is formulated. Second, in a parallel approach, eight different statistical features are extracted from the flow signal to construct another feature matrix. Subsequently, different machine learning methods namely Ensemble learning, K-Nearest Neighbor (KNN), and support vector machine (SVM) have been trained on these two feature sets to predict the valve switching characteristics. A comparison between two feature sets shows that ensemble learning gives better prediction accuracy (99.95% versus 92.2% using statistical features) when fed with RQA features combined with fractal dimensions. Therefore, this study demonstrates that by utilizing the recurrence plots and machine learning techniques on the flow rate signals, the degradation in the switching behavior of hydraulic valves can be monitored effectively, with a high-prediction accuracy.

References

1.
Saxena
,
A.
, and
Saad
,
A.
,
2007
, “
Evolving an Artificial Neural Network Classifier for Condition Monitoring of Rotating Mechanical Systems
,”
Appl. Soft Comput.
,
7
(
1
), pp.
441
454
.
2.
Davies
,
A.
,
1998
,
Handbook of Condition Monitoring: Techniques and Methodology
,
Chapman and Hall
,
London, UK
.
3.
Rao
,
B. K. N.
, ed.,
1996
,
Handbook of Condition Monitoring
,
Elsevier
,
New York
.
4.
Isermann
,
R.
,
2005
, “
Model-based Fault-Detection and Diagnosis–Status and Applications
,”
Annu. Rev. Control
,
29
(
1
), pp.
71
85
.
5.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Continuous Wavelet Transform
,”
Appl. Soft Comput.
,
11
(
2
), pp.
2300
2312
.
6.
Moradi
,
M.
,
Chaibakhsh
,
A.
, and
Ramezani
,
A.
,
2018
, “
An Intelligent Hybrid Technique for Fault Detection and Condition Monitoring of a Thermal Power Plant
,”
Appl. Math. Modell.
,
60
, pp.
34
47
.
7.
Jatin
,
P.
,
Aniket
,
N.
,
Kankar
,
P. K.
,
Gupta
,
V. K.
,
Jain
,
P. K.
,
Ravindra
,
T.
,
Vinayak
,
N.
, and
Ismail
,
M.
,
2019
, “Estimation of Load Carrying Capacity for Pin-Mounted Hydraulic Cylinders,”
Advances in Engineering Design
,
A.
Prasad
,
S. S.
Gupta
, and
R. K.
Tyagi
, eds.,
Springer
,
Singapore
, pp.
173
185
.
8.
Prakash
,
J.
,
Gupta
,
S. K.
, and
Kankar
,
P. K.
,
2020
, “
An Analytical Approach to Evaluate the Maximum Load Carrying Capacity for pin-Mounted [Q6]Telescopic Hydraulic Cylinder
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
234
(
19
), pp.
3919
3934
.
9.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2020
, “
Health Prediction of Hydraulic Cooling Circuit Using Deep Neural Network with Ensemble Feature Ranking Technique
,”
Measurement
,
151
, p.
107225
.
10.
Topçu
,
E. E.
,
Yüksel
,
İ
, and
Kamış
,
Z.
,
2006
, “
Development of Electro-Pneumatic Fast Switching Valve and Investigation of its Characteristics
,”
Mechatronics
,
16
(
6
), pp.
365
378
.
11.
Van Varseveld
,
R. B.
, and
Bone
,
G. M.
,
1997
, “
Accurate Position Control of a Pneumatic Actuator Using on/off Solenoid Valves
,”
IEEE/ASME Trans. Mechatr.
,
2
(
3
), pp.
195
204
.
12.
Cao
,
M.
,
Wang
,
K. W.
,
DeVries
,
L.
,
Fujii
,
Y.
,
Tobler
,
W. E.
,
Pietron
,
G. M.
,
Tibbles
,
T.
, and
McCallum
,
J.
,
2004
, “
Steady State Hydraulic Valve Fluid Field Estimator Based on non-Dimensional Artificial Neural Network (NDANN)
,”
ASME J. Comput. Inf. Sci. Eng.
,
4
(
3
), pp.
257
270
.
13.
Maiti
,
R.
,
Saha
,
R.
, and
Watton
,
J.
,
2002
, “
The Static and Dynamic Characteristics of a Pressure Relief Valve with a Proportional Solenoid-Controlled Pilot Stage
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
216
(
2
), pp.
143
156
.
14.
Washio
,
S.
,
Nakamura
,
Y.
, and
Yu
,
Y.
,
1999
, “
Static Characteristics of a Piston-Type Pilot Relief Valve
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
213
(
3
), pp.
231
239
.
15.
Kwuimy
,
C. A.
,
Kankar
,
P. K.
,
Chen
,
Y.
,
Chaudhry
,
Z.
, and
Nataraj
,
C.
,
2015
, “
Development of Recurrence Analysis for Fault Discrimination in Gears
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers Digital Collection
.
16.
Kwuimy
,
C. A.
,
Samadani
,
M.
,
Kankar
,
P. K.
, and
Nataraj
,
C.
,
2015
, “
Recurrence Analysis of Experimental Time Series of a Rotor Response with Bearing Outer Race Faults
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference.
American Society of Mechanical Engineers Digital Collection
.
17.
Kankar
,
P. K.
,
Sharma
,
S. C.
, and
Harsha
,
S. P.
,
2011
, “
Fault Diagnosis of Ball Bearings Using Machine Learning Methods
,”
Expert Syst. Appl.
,
38
(
3
), pp.
1876
1886
.
18.
Prakash
,
J.
, and
Kankar
,
P. K.
,
2021
, “Determining the Working Behaviour of Hydraulic System Using Support Vector Machine,”
Advances in Systems Engineering
,
Springer
,
Singapore
, pp.
781
791
.
19.
Helwig
,
N.
,
Pignanelli
,
E.
, and
Schütze
,
A.
,
2015, May
, “
Condition Monitoring of a Complex Hydraulic System Using Multivariate Statistics
,”
2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC) Proceedings
,
IEEE
, pp.
210
215
.
20.
Burlaga
,
L. F.
, and
Klein
,
L. W.
,
1986
, “
Fractal Structure of the Interplanetary Magnetic Field
,”
J. Geophys. Res.: Space Phys.
,
91
(
A1
), pp.
347
350
.
21.
Polychronaki
,
G. E.
,
Ktonas
,
P. Y.
,
Gatzonis
,
S.
,
Siatouni
,
A.
,
Asvestas
,
P. A.
,
Tsekou
,
H.
,
Sakas
,
D.
, and
Nikita
,
K. S.
,
2010
, “
Comparison of Fractal Dimension Estimation Algorithms for Epileptic Seizure Onset Detection
,”
J. Neural. Eng.
,
7
(
4
), p.
046007
.
22.
Tricot
,
C.
,
1994
,
Curves and Fractal Dimension
,
Springer Science & Business Media
,
New York
.
23.
Katz
,
M. J.
,
1988
, “
Fractals and the Analysis of Waveforms
,”
Comput. Biol. Med.
,
18
(
3
), pp.
145
156
.
24.
Mandelbrot
,
B.
,
1982
,
The Fractal Geometry of Nature
,
WH Freeman
,
New York
.
25.
Marwan
,
N.
,
Carmenromano
,
M.
,
Thiel
,
M.
, and
Kurths
,
J.
,
2007
, “
Recurrence Plots for the Analysis of Complex Systems
,”
Phys. Rep.
,
438
(
5–6
), pp.
237
329
.
You do not currently have access to this content.