Abstract

Wireframes have been proved useful as an intermediate layer of the neural network to learn the relationship between the human body and semantic parameters. However, the definition of the wireframe needs to have anthropological meaning and is highly dependent on experts’ experience. Hence, it is usually not easy to obtain a well-defined wireframe for a new set of shapes in available databases. An automated wireframe generation method would help relieve the need for the manual anthropometric definition to overcome such difficulty. One way to find such an automated wireframe generation method is to apply segmentation to divide the models into small mesh patches. Nevertheless, different segmentation approaches could have various segmented patches, thus resulting in diversified wireframes. How do these different sets of wireframes affect learning performance? In this paper, we attempt to answer this research question by defining several critical quantitative estimators to evaluate different wireframes’ learning performance. To find how such estimators influence wireframe-assisted learning accuracy, we conduct experiments by comparing different segmentation methods on human body shapes. We summarized several meaningful design guidelines for developing an automatic wireframe-aware segmentation method for human body learning with such verification.

References

1.
Kwok
,
T.-H.
,
Zhang
,
Y.-Q.
,
Wang
,
C. C.
,
Liu
,
Y.-J.
, and
Tang
,
K.
,
2015
, “
Styling Evolution for Tight-Fitting Garments
,”
IEEE Trans. Visual Comput. Graphics
,
22
(
5
), pp.
1580
1591
.
2.
Zhang
,
Y.
, and
Kwok
,
T.-H.
,
2019
, “
Customization and Topology Optimization of Compression Casts/Braces on Two-Manifold Surfaces
,”
Comput.-Aided Des.
,
111
, pp.
113
122
.
3.
Norooz
,
L.
,
Mauriello
,
M. L.
,
Jorgensen
,
A.
,
McNally
,
B.
, and
Froehlich
,
J. E.
,
2015
, “
Bodyvis: A New Approach to Body Learning Through Wearable Sensing and Visualization
,”
Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems
,
Seoul, South Korea
,
Apr. 18–23
, pp.
1025
1034
.
4.
Anguelov
,
D.
,
Srinivasan
,
P.
,
Koller
,
D.
,
Thrun
,
S.
,
Rodgers
,
J.
, and
Davis
,
J.
,
2005
, “
Scape: Shape Completion and Animation of People
,”
ACM SIGGRAPH 2005
,
New York, NY
,
July
, pp.
408
416
.
5.
Allen
,
B.
,
Curless
,
B.
, and
Popović
,
Z.
,
2003
, “
The Space of Human Body Shapes: Reconstruction and Parameterization From Range Scans
,”
ACM Trans. Graphics
,
22
(
3
), pp.
587
594
.
6.
Chu
,
C.-H.
,
Tsai
,
Y.-T.
,
Wang
,
C. C.
, and
Kwok
,
T.-H.
,
2010
, “
Exemplar-Based Statistical Model for Semantic Parametric Design of Human Body
,”
Comput. Ind.
,
61
(
6
), pp.
541
549
.
7.
Huang
,
J.
,
Kwok
,
T.-H.
, and
Zhou
,
C.
,
2019
, “
Parametric Design for Human Body Modeling by Wireframe-assisted Deep Learning
,”
Comput.-Aided Des.
,
108
, pp.
19
29
.
8.
Theologou
,
P.
,
Pratikakis
,
I.
, and
Theoharis
,
T.
,
2015
, “
A Comprehensive Overview of Methodologies and Performance Evaluation Frameworks in 3d Mesh Segmentation
,”
Comput. Vision Image Understanding
,
135
, pp.
49
82
.
9.
Rodrigues
,
R. S.
,
Morgado
,
J. F.
, and
Gomes
,
A. J.
,
2018
, “
Part‐Based Mesh Segmentation: A Survey
,”
Computer Graphics Forum
,
37
(
6
), pp.
235
274
.
10.
Varol
,
G.
,
Ceylan
,
D.
,
Russell
,
B.
,
Yang
,
J.
,
Yumer
,
E.
,
Laptev
,
I.
, and
Schmid
,
C.
,
2018
, “
Bodynet: Volumetric Inference of 3d Human Body Shapes
,”
Proceedings of the European Conference on Computer Vision (ECCV)
,
Munich, Germany
,
September
, pp.
20
36
.
11.
Hasler
,
N.
,
Stoll
,
C.
,
Sunkel
,
M.
,
Rosenhahn
,
B.
, and
Seidel
,
H.-P.
,
2009
, “
A Statistical Model of Human Pose and Body Shape
,”
Computer Graphics Forum
,
28
(
2
), pp.
337
346
.
12.
Ziaeefard
,
M.
, and
Bergevin
,
R.
,
2015
, “
Semantic Human Activity Recognition: A Literature Review
,”
Pattern Recognit.
,
48
(
8
), pp.
2329
2345
.
13.
Cheng
,
Z.-Q.
,
Chen
,
Y.
,
Martin
,
R. R.
,
Wu
,
T.
, and
Song
,
Z.
,
2018
, “
Parametric Modeling of 3D Human Body Shape—a Survey
,”
Comput. Graphics
,
71
, pp.
88
100
.
14.
Baek
,
S.-Y.
, and
Lee
,
K.
,
2012
, “
Parametric Human Body Shape Modeling Framework for Human-Centered Product Design
,”
Comput.-Aided Des.
,
44
(
1
), pp.
56
67
.
15.
Seo
,
H.
, and
Magnenat-Thalmann
,
N.
,
2003
, “
An Automatic Modeling of Human Bodies From Sizing Parameters
,”
I3D03: ACM Symposium on Interactive 3D Graphics
,
Monterey, CA
,
April
.
16.
Wang
,
C. C.
,
2005
, “
Parameterization and Parametric Design of Mannequins
,”
Comput.-Aided Des.
,
37
(
1
), pp.
83
98
.
17.
KwoK
,
T.-H.
,
Zhang
,
Y.
, and
Wang
,
C. C.
,
2011
, “
Efficient Optimization of Common Base Domains for Cross Parameterization
,”
IEEE Trans. Visual Comput. Graphics
,
18
(
10
), pp.
1678
1692
.
18.
Chen
,
Y.
,
Liu
,
Z.
, and
Zhang
,
Z.
,
2013
, “
Tensor-Based Human Body Modeling
,”
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
,
Portland, OR
,
June 23–28
.
19.
Zhang
,
Y.
,
Zheng
,
J.
, and
Magnenat-Thalmann
,
N.
,
2015
, “
Example-Guided Anthropometric Human Body Modeling
,”
Visual Comput.
,
31
(
12
), pp.
1615
1631
.
20.
Hu
,
R.
,
Fan
,
L.
, and
Liu
,
L.
,
2012
, “
Co‐Segmentation of 3D Shapes via Subspace Clustering
,”
Computer Graphics Forum
,
31
(
5
), pp.
1703
1713
.
21.
Liu
,
R.
, and
Zhang
,
H.
,
2004
, “
Segmentation of 3D Meshes Through Spectral Clustering
,”
Proceedings of the 12th Pacific Conference on Computer Graphics and Applications, 2004
,
Seoul, South Korea
,
Oct. 6–8
, IEEE, pp.
298
305
.
22.
Benhabiles
,
H.
,
Lavoué
,
G.
,
Vandeborre
,
J.-P.
, and
Daoudi
,
M.
,
2011
, “
Learning Boundary Edges for 3D‐Mesh Segmentation
,”
Computer Graphics Forum
,
30
(
8
), pp.
2170
2182
.
23.
Zheng
,
Y.
, and
Tai
,
C.-L.
,
2010
, “
Mesh Decomposition with Cross‐Boundary Brushes
,”
Computer Graphics Forum
,
29
(
2
), pp.
527
535
.
24.
Bonneel
,
N.
,
Coeurjolly
,
D.
,
Gueth
,
P.
, and
Lachaud
,
J.-O.
,
2018
, “
Mumford‐Shah Mesh Processing using the Ambrosio‐Tortorelli Functional
,”
Computer Graphics Forum
,
37
(
7
), pp.
75
85
.
25.
Lawonn
,
K.
,
Gasteiger
,
R.
,
Rössl
,
C.
, and
Preim
,
B.
,
2014
, “
Adaptive and Robust Curve Smoothing on Surface Meshes
,”
Comput. Graphics
,
40
, pp.
22
35
.
26.
Schindler
,
F.
, and
Förstner
,
W.
,
2011
, “
Fast Marching for Robust Surface Segmentation
,”
ISPRS Conference on Photogrammetric Image Analysis
,
Munich, Germany
,
Oct. 5–7
, Springer, pp.
147
158
.
27.
Kimmel
,
R.
, and
Sethian
,
J. A.
,
1998
, “
Computing Geodesic Paths on Manifolds
,”
Proc. Natl. Acad. Sci. USA
,
95
(
15
), pp.
8431
8435
.
28.
Moenning
,
C.
, and
Dodgson
,
N. A.
,
2003
, “
Fast Marching Farthest Point Sampling
,”
Technical reports
,
University of Cambridge, Computer Laboratory
. https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-562.pdf
29.
Dessein
,
A.
,
Smith
,
W. A.
,
Wilson
,
R. C.
, and
Hancock
,
E. R.
,
2017
, “
Symmetry‐Aware Mesh Segmentation into Uniform Overlapping Patches
,”
Computer Graphics Forum
,
36
(
8
), pp.
95
107
.
30.
Kaick
,
O. V.
,
Fish
,
N.
,
Kleiman
,
Y.
,
Asafi
,
S.
, and
Cohen-Or
,
D.
,
2014
, “
Shape Segmentation by Approximate Convexity Analysis
,”
ACM Trans. Graphics
,
34
(
1
), pp.
1
11
.
31.
Shapira
,
L.
,
Shamir
,
A.
, and
Cohen-Or
,
D.
,
2008
, “
Consistent Mesh Partitioning and Skeletonisation Using the Shape Diameter Function
,”
Visual Comput.
,
24
(
4
), p.
249
.
32.
Rubner
,
Y.
,
Tomasi
,
C.
, and
Guibas
,
L. J.
,
2000
, “
The Earth Mover’s Distance As a Metric for Image Retrieval
,”
Int. J. Comput. Vision
,
40
(
2
), pp.
99
121
.
33.
Rodola
,
E.
,
Bulo
,
S. R.
, and
Cremers
,
D.
,
2014
, “
Robust Region Detection via Consensus Segmentation of Deformable Shapes
,”
Computer Graphics Forum
,
33
(
5
), pp.
97
106
.
34.
Golovinskiy
,
A.
, and
Funkhouser
,
T.
,
2008
, “
Randomized Cuts for 3D Mesh Analysis
,”
ACM SIGGRAPHAsia 2008
,
Singapore
,
December
, pp.
1
12
.
35.
Rustamov
,
R. M.
,
2007
, “
Laplace-Beltrami Eigenfunctions for Deformation Invariant Shape Representation
,”
Proceedings of the Fifth Eurographics symposium on Geometry processing
,
Barcelona, Spain
,
July 4–6
, pp.
225
233
.
You do not currently have access to this content.