Abstract

Robotic manipulators are complex and dynamic nonlinear mechanical systems subject to numerous uncertainties, such as payload variations, frictions, and unmodeled dynamics. To mitigate the uncertainty caused by these disturbances and minimize the tracking errors of the controllers, this study proposed a finite time tracking-based controller (FTC) that embeds a (NDO) and a second-order sliding-mode modifier (SOSM). The NDO was incorporated to compensate for the system’s global bounded uncertainty and the SOSM used a robust nonsingular terminal sliding-mode modifier to stabilize the controller. The theoretical analysis showed that the tracking error could quickly converge in finite time. Simulation on a typical robotics manipulator demonstrated the practical appeal of the proposed scheme.

References

1.
Tran
,
M.-D.
, and
Kang
,
H.-J.
,
2016
, “
A Novel Adaptive Finite Time Tracking Control for Robotic Manipulators Using Nonsingular Terminal Sliding-Mode and RBF Neural Networks
,”
Int. J. Precis. Eng. Manuf.
,
17
(
7
), pp.
863
870
.
2.
Amin
,
A. T. M.
,
Rahim
,
A. H. A.
, and
Low
,
C. Y.
,
2014
, “
Adaptive Controller Algorithm for 2-DOF Humanoid Robot Arm
,”
Procedia Technol.
,
15
, pp.
765
774
.
3.
Ren
,
B.
,
Wang
,
Y.
,
Luo
,
X.
, and
Lozano
,
R.
,
2019
, “
A Hybrid Adaptive Control Strategy for Industrial Robotic Joints
,”
IEEE Access
,
7
, pp.
47034
47042
.
4.
Feng
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
2001
, “
Adaptive Fast Terminal Sliding-Mode Tracking Control
of
Robotic Manipulator
,”
Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228)
,
Orlando, FL
,
Dec. 4-7
, pp. Vol.
4
, pp.
4021
4026
.
5.
Maolin
,
J.
,
Jinoh
,
L.
,
Pyung Hun
,
C.
, and
Chintae
,
C.
,
2009
, “
Practical Nonsingular Terminal Sliding-Mode Control of Robot Manipulators for High-Accuracy Tracking Control
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3593
3601
.
6.
Tran
,
M.-D.
, and
Kang
,
H.-J.
,
2017
, “
Adaptive Terminal Sliding-Mode Control of Uncertain Robotic Manipulators Based on Local Approximation of a Dynamic System
,”
Neurocomputing
,
228
, pp.
231
240
.
7.
Pan
,
Y.
,
Li
,
X.
,
Wang
,
H.
, and
Yu
,
H.
,
2018
, “
Continuous Sliding-Mode Control of Compliant Robot Arms: A Singularly Perturbed Approach
,”
Mechatronics
,
52
, pp.
127
134
.
8.
Ge
,
S. S.
,
Huang
,
C. C.
, and
Woon
,
L. C.
,
1997
, “
Adaptive Neural Network Control of Robot Manipulators in Task Space
,”
IEEE Trans. Ind. Electron.
,
44
(
6
), pp.
746
752
.
9.
Liu
,
H.
, and
Zhang
,
T.
,
2013
, “
Adaptive Neural Network Finite Time Control for Uncertain Robotic Manipulators
,”
J Intell. Rob. Syst.
,
75
(
3–4
), pp.
363
377
.
10.
He
,
W.
,
David
,
A. O.
,
Yin
,
Z.
, and
Sun
,
C.
,
2016
, “
Neural Network Control of a Robotic Manipulator With Input Deadzone and Output Constraint
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
46
(
6
), pp.
759
770
.
11.
Khelfi
,
M. F.
, and
Abdessameud
,
A.
,
2007
, “
Robust H-Infinity Trajectory Tracking Controller for a 6 D.O.F PUMA 560 Robot Manipulator
,”
The 2007 IEEE International Electric Machines and Drives Conference (IEMDC)
,
Antalya, Turkey
,
May 3–5
, pp.
88
94
.
12.
Liu
,
H.
,
Tian
,
X.
,
Wang
,
G.
, and
Zhang
,
T.
,
2016
, “
Finite Time H Control for High-Precision Tracking in Robotic Manipulators Using Backstepping Control
,”
IEEE Trans. Ind. Electron.
,
63
(
9
), pp.
5501
5513
.
13.
He
,
W.
,
Dong
,
Y.
, and
Sun
,
C.
,
2016
, “
Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
46
(
3
), pp.
334
344
.
14.
Wang
,
L.
,
Chai
,
T.
, and
Zhai
,
L.
,
2009
, “
Neural-Network-Based Terminal Sliding-Mode Control of Robotic Manipulators Including Actuator Dynamics
,”
IEEE Trans. Ind. Electron.
,
56
(
9
), pp.
3296
3304
.
15.
Guan
,
J.
,
Lin
,
C.-M.
,
Ji
,
G.-L.
,
Qian
,
L.-W.
, and
Zheng
,
Y.-M.
,
2018
, “
Robust Adaptive Tracking Control for Manipulators Based on a TSK Fuzzy Cerebellar Model Articulation Controller
,”
IEEE Access
,
6
, pp.
1670
1679
.
16.
Wai
,
R.-J.
,
2003
, “
Tracking Control Based on Neural Network Strategy for Robot Manipulator
,”
Neurocomputing
,
51
, pp.
425
445
.
17.
Sun
,
T.
,
Pei
,
H.
,
Pan
,
Y.
,
Zhou
,
H.
, and
Zhang
,
C.
,
2011
, “
Neural Network-Based Sliding-Mode Adaptive Control for Robot Manipulators
,”
Neurocomputing
,
74
(
14–15
), pp.
2377
2384
.
18.
Islam
,
S.
, and
Liu
,
X. P.
,
2011
, “
Robust Sliding-Mode Control for Robot Manipulators
,”
IEEE Trans. Ind. Electron.
,
58
(
6
), pp.
2444
2453
.
19.
Van Cuong
,
P.
, and
Nan
,
W. Y.
,
2015
, “
Adaptive Trajectory Tracking Neural Network Control With Robust Compensator for Robot Manipulators
,”
Neural Comput. Appl.
,
27
(
2
), pp.
525
536
.
20.
Lian
,
K.-Y.
, and
Lin
,
C.-R.
,
1998
, “
Sliding-Mode Motion/Force Control of Constrained Robots
,”
IEEE Trans. Autom. Control
,
43
(
8
), pp.
1101
1103
.
21.
Feng
,
Y.
,
Yu
,
X.
, and
Man
,
Z.
,
2002
, “
Non-singular Terminal Sliding-Mode Control of Rigid Manipulators
,”
Automatica
,
38
(12), pp.
2159
2167
.
22.
Mien
,
V.
,
Shuzhi Sam
,
G.
, and
Hongliang
,
R.
,
2017
, “
Finite Time Fault Tolerant Control for Robot Manipulators Using Time Delay Estimation and Continuous Nonsingular Fast Terminal Sliding-Mode Control
,”
IEEE Trans. Cybern.
,
47
(
7
), pp.
1681
1693
.
23.
Yang
,
L.
, and
Yang
,
J.
,
2011
, “
Nonsingular Fast Terminal Sliding-Mode Control for Nonlinear Dynamical Systems
,”
Int. J. Robust Nonlinear Control
,
21
(
16
), pp.
1865
1879
.
24.
Mohammadi
,
A.
,
Tavakoli
,
M.
,
Marquez
,
H. J.
, and
Hashemzadeh
,
F.
,
2013
, “
Nonlinear Disturbance Observer Design for Robotic Manipulators
,”
Control Eng. Pract.
,
21
(
3
), pp.
253
267
.
25.
Van
,
M.
,
Kang
,
H.-J.
, and
Suh
,
Y.-S.
,
2013
, “
A Novel Neural Second-Order Sliding-Mode Observer for Robust Fault Diagnosis in Robot Manipulators
,”
Int. J. Precis. Eng. Manuf.
,
14
(
3
), pp.
397
406
.
26.
Yang
,
P.
,
Ma
,
X.
,
Wang
,
J.
,
Zhang
,
G.
,
Zhang
,
Y.
, and
Chen
,
L.
,
2019
, “
Disturbance Observer-Based Terminal Sliding-Mode Control of a 5-DOF Upper-Limb Exoskeleton Robot
,”
IEEE Access
,
7
, pp.
62833
62839
.
27.
Kim
,
M. J.
, and
Chung
,
W. K.
,
2015
, “
Disturbance-Observer-Based PD Control of Flexible Joint Robots for Asymptotic Convergence
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1508
1516
.
28.
Chen
,
W.-H.
,
Ballance
,
D. J.
,
Gawthrop
,
P. J.
, and
O’Reilly
,
J.
,
2000
, “
A Nonlinear Disturbance Observer for Robotic Manipulators
,”
IEEE Trans. Ind. Electron.
,
47
(
4
), pp.
932
938
.
29.
Li
,
Z.
,
Su
,
C.-Y.
,
Wang
,
L.
,
Chen
,
Z.
, and
Chai
,
T.
,
2015
, “
Nonlinear Disturbance Observer-Based Control Design for a Robotic Exoskeleton Incorporating Fuzzy Approximation
,”
IEEE Trans. Ind. Electron.
,
62
(
9
), pp.
5763
5775
.
30.
Pan
,
Y.
,
Liu
,
Y.
,
Xu
,
B.
, and
Yu
,
H.
,
2016
, “
Hybrid Feedback Feedforward An Efficient Design of Adaptive Neural Network Control
,”
Neural Netw.
,
76
, pp.
122
134
.
31.
Cheng
,
C.-C.
, and
Lee
,
J.-J.
,
2019
, “
Design of Adaptive Terminal Super-Twisting Controllers for Nonlinear Systems With Mismatched Perturbations
,”
Int. J. Control
, pp.
1
11
.
32.
Jouini
,
M.
,
Dhahri
,
S.
, and
Sellami
,
A.
,
2017
, “
Design of Robust Supertwisting Algorithm Based Second-Order Sliding-Mode Controller for Nonlinear Systems With Both Matched and Unmatched Uncertainty
,”
Complexity
,
2017
, pp.
1
8
.
33.
Nagesh
,
I.
, and
Edwards
,
C.
,
2014
, “
A Multivariable Super-Twisting Sliding-Mode Approach
,”
Automatica
,
50
(
3
), pp.
984
988
.
You do not currently have access to this content.