Abstract

Multi-objective optimization (MOO) problems are encountered in many applications, of which bi-objective problems are frequently met. Despite the computational efforts, the quality of the Pareto front is also a considerable issue. An evenly distributed Pareto front is desirable in certain cases when a continuous representation of the Pareto front is needed. In this paper, a new approach called circle intersection (CI) is proposed. First, the anchor points are computed. Then in the normalized objective space, a circle with a proper radius of r centering at one of the anchor points or the latest obtained Pareto point is drawn. Interestingly, the intersection of the circle and the feasible boundary can be determined whether it is a Pareto point or not. For a convex or concave feasible boundary, the intersection is exactly the Pareto point, while for other cases, the intersection can provide useful information for searching the true Pareto point even if it is not a Pareto point. A novel MOO formulation is proposed for CI correspondingly. Sixteen examples are used to demonstrate the applicability of the proposed method and results are compared to those of normalized normal constraint (NNC), multi-objective grasshopper optimization algorithm (MOGOA), and non-dominated sorting genetic algorithm (NSGA-II). Computational results show that the proposed CI method is able to obtain a well-distributed Pareto front with a better quality or with less computational cost.

References

1.
Stadler
,
W.
,
1988
, “Fundamentals of Multicriteria Optimization,”
Multicriteria Optimization in Engineering and in the Sciences
,
W.
Stadler
, ed.,
Plenum Press
,
New York
, pp.
1
25
.
2.
Grandhi
,
R. V.
,
Bharatram
,
G.
, and
Venkayya
,
V. B.
,
1993
, “
Multiobjective Optimization of Large-Scale Structures
,”
AIAA J.
,
31
(
7
), pp.
1329
1337
.
3.
Das
,
I.
, and
Dennis
,
J. E.
,
1997
, “
A Closer Look at Drawbacks of Minimizing Weighted Sums of Objectives for Pareto Set Generation in Multicriteria Optimization Problems
,”
Struct. Optim.
,
14
(
1
), pp.
63
69
.
4.
Koski
,
J.
,
1985
, “
Defectiveness of the Weighting Method in Multicriterion Optimization of Structures
,”
Commun. Appl. Numer. Methods
,
1
(
6
), pp.
333
337
.
5.
Messac
,
A.
,
1996
, “
Physical Programming-Effective Optimization for Computational Design
,”
AIAA J.
,
34
(
1
), pp.
149
158
.
6.
Messac
,
A.
, and
Mattson
,
C. A.
,
2002
, “
Generating Well-Distributed Sets of Pareto Points for Engineering Design Using Physical Programming
,”
Optim. Eng.
,
3
(
4
), pp.
431
450
.
7.
Marler
,
R. T.
, and
Arora
,
J. S.
,
2004
, “
Survey of Multi-Objective Optimization Methods for Engineering
,”
Struct. Multidiscpl. Optim.
,
26
(
6
), pp.
369
395
.
8.
Das
,
I.
, and
Dennis
,
J. E.
,
1998
, “
Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems
,”
SIAM J. Optim.
,
8
(
3
), pp.
631
657
.
9.
Ismail-Yahaya
,
A.
, and
Messac
,
A.
,
2002
, “
Effective Generation of the Pareto Frontier Using the Normal Constraint Method
,”
Proceedings of the AIAA 40th Aerospace Sciences Meeting and Exhibit.
,
Reno, NV
,
Jan. 14–17
, Paper No. AIAA 2002–0178.
10.
Messac
,
A.
, and
Mattson
,
C. A.
,
2004
, “
Normal Constraint Method With Guarantee of Even Representation of Complete Pareto Frontier
,”
AIAA J.
,
42
(
10
), pp.
2101
2111
.
11.
Messac
,
A.
,
Ismail-Yahaya
,
A.
, and
Mattson
,
C. A.
,
2003
, “
The Normalized Normal Constraint Method for Generating the Pareto Frontier
,”
Struct. Multidiscipl. Optim.
,
25
(
2
), pp.
86
98
.
12.
Cheng
,
F. Y.
, and
Li
,
D.
,
1998
, “
Genetic Algorithm Development for Multiobjective Optimization of Structures
,”
AIAA J.
,
36
(
6
), pp.
1105
1112
.
13.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
.
14.
Zitzler
,
E.
,
Laumanns
,
M.
, and
Thiele
,
L.
,
2002
, “
SPEA2: Improving the Strength Pareto Evolutionary Algorithm
,”
Proceedings of Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems
,
Athens, Greece
,
Sept. 19–21
.
15.
Srinivasan
,
D.
, and
Tettamanzi
,
A.
,
1996
, “
Heuristics-Guided Evolutionary Approach to Multiobjective Generation Scheduling
,”
IEE Proc.: Gener. Trans. Distrib.
,
143
(
6
), pp.
553
559
.
16.
Storn
,
R.
, and
Price
,
K.
,
1995
, “
Differential Evolution: A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces
,” No. TR-95-012,
International Computer Science Institute
,
Berkeley, CA
.
17.
Kukkonen
,
S.
, and
Lampinen
,
J.
,
2004
, “
An Extension of Generalized Differential Evolution for Multi-Objective Optimization With Constraints
,”
Parallel Problem Solving From Nature—PPSN VIII: 8th International Conference
,
Birmingham, UK
,
Sept. 18–22
. Proceedings, X. Yao, E. K. Burke, J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A. Bullinaria, J. E. Rowe, P. Tiňo, A. Kabán, and H.-P. Schwefel, eds., Springer, Berlin, p. 752–761.
18.
Martí
,
L.
,
García
,
J.
,
Berlanga
,
A.
, and
Molina
,
J. M.
,
2016
, “
A Stopping Criterion for Multi-Objective Optimization Evolutionary Algorithms
,”
Inf. Sci.
,
367–368
, pp.
700
718
.
19.
Zhang
,
Y.
,
Zhang
,
W. Q.
,
Gong
,
D. W.
,
Guo
,
Y. N.
, and
Li
,
L. D.
,
2016
, “
An Improved PSO Algorithm for Interval Multi-Objective Optimization Systems
,”
IEICE Trans. Inf. Syst.
,
E99D
(
9
), pp.
2381
2384
.
20.
Mirjalili
,
S.
, and
Lewis
,
A.
,
2016
, “
The Whale Optimization Algorithm
,”
Adv. Eng. Softw.
,
95
(
2016
), pp.
51
67
.
21.
Mirjalili
,
S. Z.
,
Mirjalili
,
S.
,
Saremi
,
S.
,
Faris
,
H.
, and
Aljarah
,
I.
,
2017
, “
Grasshopper Optimization Algorithm for Multi-Objective Optimization Problems
,”
Appl. Intell.
,
48
, pp.
805
820
.
22.
Ginley
,
B. M.
,
Maher
,
J.
,
Riordan
,
C. O.
, and
Morgan
,
F.
,
2011
, “
Maintaining Healthy Population Diversity Using Adaptive Crossover, Mutation, and Selection
,”
IEEE Trans. Evol. Comput.
,
15
(
5
), pp.
692
714
.
23.
Kumar
,
A.
,
Sharma
,
D.
, and
Deb
,
K.
,
2007
, “
A Hybrid Multi-Objective Optimization Procedure Using PCX Based NSGA-II and Sequential Quadratic Programming
,”
Proceedings of the 2007 IEEE Congress on Evolutionary Computation
,
Singapore
,
Sept. 25–28
, pp.
3011
3018
.
24.
Bhuvana
,
J.
, and
Aravindan
,
C.
,
2016
, “
Memetic Algorithm With Preferential Local Search Using Adaptive Weights for Multi-Objective Optimization Problems
,”
Soft Comput.
,
20
(
4
), pp.
1365
1388
.
25.
Bhuvana
,
J.
, and
Aravindan
,
C.
,
2016
, “
Stopping Criteria for MAPLS-AW, a Hybrid Multi-Objective Evolutionary Algorithm
,”
Soft Comput.
,
20
(
6
), pp.
2409
2432
.
26.
Jiang
,
Q. Y.
,
Wang
,
L.
,
Hei
,
X. H.
,
Yu
,
G. L.
,
Lin
,
Y. Y.
, and
Lu
,
X. F.
,
2016
, “
MOEA/D-ARA Plus SBX: A New Multi-Objective Evolutionary Algorithm Based on Decomposition With Artificial Raindrop Algorithm and Simulated Binary Crossover
,”
Knowl. Based Syst.
,
107
, pp.
197
218
.
27.
Pavelski
,
L. M.
,
Delgado
,
M. R.
,
Almeida
,
C. P.
,
Gonçalves
,
R. A.
, and
Venske
,
S. M.
,
2016
, “
Extreme Learning Surrogate Models in Multi-Objective Optimization Based on Decomposition
,”
Neurocomputing
,
180
, pp.
55
67
.
28.
Zhou
,
J.
,
Li
,
M.
, and
Xu
,
M.
,
2016
, “
A Novel Sequential Multi-Objective Optimization Using Anchor Points in the Design Space of Global Variables
,”
ASME J. Mech. Des.
,
138
(
12
), p.
121406
.
29.
Hughes
,
E. J.
,
2008
, “Many Objective Optimisation: Direct Objective Boundary Identification,”
Parallel Problem Solving From Nature—PPSN X
,
G.
Rudolph
,
T.
Jansen
,
N.
Beume
,
S.
Lucas
, and
C.
Poloni
, eds.,
Springer
,
Berlin
, pp.
733
742
.
30.
Wu
,
J.
, and
Azarm
,
S.
,
2001
, “
Metrics for Quality Assessment of a Multi-Objective Design Optimization Solution Set
,”
ASME J. Mech. Des.
,
123
(
1
), pp.
18
25
.
31.
Cheng
,
S.
,
Zhou
,
J. H.
, and
Li
,
M.
,
2015
, “
A new Hybrid Algorithm for Multi-Objective Robust Optimization With Interval Uncertainty
,”
ASME J. Mech. Des.
,
137
(
2
), p.
021401
.
32.
Deb
,
K.
,
Thiele
,
L.
,
Laumanns
,
M.
, and
Zitzler
,
E.
,
2001
, “
Scalable Test Problems for Evolutionary Multi-Objective Optimization
,” TIK-Technical Report No. 112.
33.
Zhang
,
Q.
,
Zhou
,
A.
,
Zhao
,
S.
,
Suganthan
,
P. N.
,
Liu
,
W.
, and
Tiwari
,
S.
,
2008
, “
Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition
,”
University of Essex
,
Colchester, UK
and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms, Technical Report.
34.
Li
,
M.
,
2007
, “
Robust Optimization and Sensitivity Analysis With Multi-Objective Genetic Algorithms: Single- and Multi-Disciplinary Applications
,”
Doctoral dissertation
,
University of Maryland
,
College Park, MD
.
You do not currently have access to this content.