Abstract

Lattice structures have been widely used in various applications of additive manufacturing due to its superior physical properties. If modeled by triangular meshes, a lattice structure with huge number of struts would consume massive memory. This hinders the use of lattice structures in large-scale applications (e.g., to design the interior structure of a solid with spatially graded material properties). To solve this issue, we propose a memory-efficient method for the modeling and slicing of adaptive lattice structures. A lattice structure is represented by a weighted graph where the edge weights store the struts’ radii. When slicing the structure, its solid model is locally evaluated through convolution surfaces in a streaming manner. As such, only limited memory is needed to generate the toolpaths of fabrication. Also, the use of convolution surfaces leads to natural blending at intersections of struts, which can avoid the stress concentration at these regions. We also present a computational framework for optimizing supporting structures and adapting lattice structures with prescribed density distributions. The presented methods have been validated by a series of case studies with large number (up to 100 M) of struts to demonstrate its applicability to large-scale lattice structures.

References

1.
Martínez
,
J.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2016
, “
Procedural Voronoi Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
35
(
4
), p.
44
.
2.
Martínez
,
J.
,
Song
,
H.
,
Dumas
,
J.
, and
Lefebvre
,
S.
,
2017
, “
Orthotropic K-Nearest Foams for Additive Manufacturing
,”
ACM Trans. Graph.
,
36
(
4
), p.
121
.
3.
Kuipers
,
T.
,
Wu
,
J.
, and
Wang
,
C. C.
,
2019
, “
CrossFill: Foam Structure With Graded Density for Continuous Material Extrusion
,”
Comput. Aided Des.
,
114
, pp.
37
50
.
4.
Qin
,
Z.
,
Jung
,
G. S.
,
Kang
,
M. J.
, and
Buehler
,
M. J.
,
2017
, “
The Mechanics and Design of a Lightweight Three-Dimensional Graphene Assembly
,”
Sci. Adv.
,
3
(
1
), p.
e1601536
.
5.
Rosen
,
D.
,
Johnston
,
S.
,
Reed
,
M.
, and
Wang
,
H.
,
2006
, “
Design of General Lattice Structures for Lightweight and Compliance Applications
,”
Rapid Manufacturing Conference
,
London, UK
,
July 5–6
.
6.
Chen
,
Y.
, and
Wang
,
C. C.
,
2008
, “
Layered Depth-Normal Images for Complex Geometries—Part One: Accurate Sampling and Adaptive Modeling
,”
ASME IDETC/CIE 2008 Conference, 28th Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
, pp.
729
739
.
7.
Chougrani
,
L.
,
Pernot
,
J.-P.
,
Véron
,
P.
, and
Abed
,
S.
,
2017
, “
Lattice Structure Lightweight Triangulation for Additive Manufacturing
,”
Comput. Aided Des.
,
90
, pp.
95
104
.
8.
Si
,
H.
,
2015
, “
Tetgen, a Delaunay-Based Quality Tetrahedral Mesh Generator
,”
ACM Trans. Math. Soft.
,
41
(
2
), p.
11
.
9.
Gao
,
W.
,
Zhang
,
Y.
,
Ramanujan
,
D.
,
Ramani
,
K.
,
Chen
,
Y.
,
Williams
,
C. B.
,
Wang
,
C. C.
,
Shin
,
Y. C.
,
Zhang
,
S.
, and
Zavattieri
,
P. D.
,
2015
, “
The Status, Challenges, and Future of Additive Manufacturing in Engineering
,”
Comput. Aided Des.
,
69
, pp.
65
89
.
10.
Livesu
,
M.
,
Ellero
,
S.
,
Martínez
,
J.
,
Lefebvre
,
S.
, and
Attene
,
M.
,
2017
, “
From 3D Models to 3D Prints: An Overview of the Processing Pipeline
,”
Comput. Graph. Forum
,
36
(
2
), pp.
537
564
.
11.
Leung
,
Y.-S.
,
Kwok
,
T.-H.
,
Li
,
X.
,
Yang
,
Y.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2019
, “
Challenges and Status on Design and Computation for Emerging Additive Manufacturing Technologies
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
2
), p.
021013
.
12.
Ding
,
D.
,
Pan
,
Z. S.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2014
, “
A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
73
(
1–4
), pp.
173
183
.
13.
Zhao
,
H.
,
Gu
,
F.
,
Huang
,
Q.-X.
,
Garcia
,
J.
,
Chen
,
Y.
,
Tu
,
C.
,
Benes
,
B.
,
Zhang
,
H.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2016
, “
Connected Fermat Spirals for Layered Fabrication
,”
ACM Trans. Graph.
,
35
(
4
), p.
100
.
14.
Steuben
,
J. C.
,
Iliopoulos
,
A. P.
, and
Michopoulos
,
J. G.
,
2016
, “
Implicit Slicing for Functionally Tailored Additive Manufacturing
,”
Comput. Aided Des.
,
77
, pp.
107
119
.
15.
Kumar
,
G. S.
,
Pandithevan
,
P.
, and
Ambatti
,
A. R.
,
2009
, “
Fractal Raster Tool Paths for Layered Manufacturing of Porous Objects
,”
Virtual Phys. Prototyp.
,
4
(
2
), pp.
91
104
.
16.
Wu
,
J.
,
Wang
,
C. C.
,
Zhang
,
X.
, and
Westermann
,
R.
,
2016
, “
Self-Supporting Rhombic Infill Structures for Additive Manufacturing
,”
Comput. Aided Des.
,
80
, pp.
32
42
.
17.
Lee
,
J.
, and
Lee
,
K.
,
2017
, “
Block-Based Inner Support Structure Generation Algorithm for 3d Printing Using Fused Deposition Modeling
,”
Int. J. Adv. Manuf. Technol.
,
89
(
5–8
), pp.
2151
2163
.
18.
Lu
,
L.
,
Sharf
,
A.
,
Zhao
,
H.
,
Wei
,
Y.
,
Fan
,
Q.
,
Chen
,
X.
,
Savoye
,
Y.
,
Tu
,
C.
,
Cohen-Or
,
D.
, and
Chen
,
B.
,
2014
, “
Build-to-Last: Strength to Weight 3d Printed Objects
,”
ACM Trans. Graph.
,
33
(
4
), p.
97
.
19.
Lee
,
M.
,
Fang
,
Q.
,
Cho
,
Y.
,
Ryu
,
J.
,
Liu
,
L.
, and
Kim
,
D.-S.
,
2018
, “
Support-Free Hollowing for 3d Printing Via Voronoi Diagram of Ellipses
,”
Comput. Aided Des.
,
101
, pp.
23
36
.
20.
Stanković
,
T.
, and
Shea
,
K.
,
2020
, “
Investigation of a Voronoi Diagram Representation for the Computational Design of Additively Manufactured Discrete Lattice Structures
,”
ASME J. Mech. Des.
,
142
(
11
), p.
111704
.
21.
Wang
,
W.
,
Wang
,
T. Y.
,
Yang
,
Z.
,
Liu
,
L.
,
Tong
,
X.
,
Tong
,
W.
,
Deng
,
J.
,
Chen
,
F.
, and
Liu
,
X.
,
2013
, “
Cost-Effective Printing of 3d Objects With Skin-Frame Structures
,”
ACM Trans. Graph.
,
32
(
6
), p.
177
.
22.
Zhang
,
X.
,
Xia
,
Y.
,
Wang
,
J.
,
Yang
,
Z.
,
Tu
,
C.
, and
Wang
,
W.
,
2015
, “
Medial Axis Tree—An Internal Supporting Structure for 3d Printing
,”
Comput. Aided Geom. Des.
,
35
, pp.
149
162
.
23.
Schumacher
,
C.
,
Bickel
,
B.
,
Rys
,
J.
,
Marschner
,
S.
,
Daraio
,
C.
, and
Gross
,
M.
,
2015
, “
Microstructures to Control Elasticity in 3d Printing
,”
ACM Trans. Graph.
,
34
(
4
), p.
136
.
24.
Panetta
,
J.
,
Zhou
,
Q.
,
Malomo
,
L.
,
Pietroni
,
N.
,
Cignoni
,
P.
, and
Zorin
,
D.
,
2015
, “
Elastic Textures for Additive Fabrication
,”
ACM Trans. Graph.
,
34
(
4
), p.
135
.
25.
Fryazinov
,
O.
,
Vilbrandt
,
T.
, and
Pasko
,
A.
,
2013
, “
Multi-Scale Space-Variant Frep Cellular Structures
,”
Comput. Aided Des.
,
45
(
1
), pp.
26
34
.
26.
Yang
,
Y.
,
Chai
,
S.
, and
Fu
,
X.-M.
,
2018
, “
Computing Interior Support-Free Structure Via Hollow-to-Fill Construction
,”
Comput. Graph.
,
70
, pp.
148
156
.
27.
Christiansen
,
A. N.
,
Schmidt
,
R.
, and
Bærentzen
,
J. A.
,
2015
, “
Automatic Balancing of 3D Models
,”
Comput. Aided Des.
,
58
, pp.
236
241
.
28.
Stava
,
O.
,
Vanek
,
J.
,
Benes
,
B.
,
Carr
,
N.
,
Mès
,
R.
,
Jérémie
, and
Lefebvre
,
S.
,
2012
, “
Stress Relief: Improving Structural Strength of 3d Printable Objects
,”
ACM Trans. Graph.
,
31
(
4
), pp.
48:1
48:11
.
29.
Ou
,
J.
,
Dublon
,
G.
,
Cheng
,
C.-Y.
,
Heibeck
,
F.
,
Willis
,
K.
, and
Ishii
,
H.
,
2016
, “
Cilllia: 3D Printed Micro-Pillar Structures for Surface Texture, Actuation and Sensing
,”
Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems
,
San Jose, CA
,
May
.
30.
Vanek
,
J.
,
Galicia
,
J. A. G.
, and
Benes
,
B.
,
2014
, “
Clever Support: Efficient Support Structure Generation for Digital Fabrication
,”
Comput. Graph. Forum
,
33
(
5
), pp.
117
125
.
31.
Zhang
,
X.
,
Le
,
X.
,
Panotopoulou
,
A.
,
Whiting
,
E.
, and
Wang
,
C. C.
,
2015
, “
Perceptual Models of Preference in 3D Printing Direction
,”
ACM Trans. Graph.
,
34
(
6
), p.
215
.
32.
Dumas
,
J.
,
Hergel
,
J.
, and
Lefebvre
,
S.
,
2014
, “
Bridging the Gap: Automated Steady Scaffoldings for 3d Printing
,”
ACM Trans. Graph.
,
33
(
4
), p.
98
.
33.
Hu
,
K.
,
Jin
,
S.
, and
Wang
,
C. C.
,
2015
, “
Support Slimming for Single Material Based Additive Manufacturing
,”
Comput. Aided Des.
,
65
, pp.
1
10
.
34.
Wang
,
C. C.
,
Wang
,
Y.
, and
Yuen
,
M. M.
,
2003
, “
Feature-Based 3d Non-Manifold Freeform Object Construction
,”
Eng. Comput.
,
19
, pp.
174
190
.
35.
Sherstyuk
,
A.
,
1999
, “
Kernel Functions in Convolution Surfaces: A Comparative Analysis
,”
Vis. Comput.
,
15
, pp.
171
182
.
36.
Hubert
,
E.
, and
Cani
,
M.-P.
,
2012
, “
Convolution Surfaces Based on Polygonal Curve Skeletons
,”
J. Symb. Comput.
,
47
(
6
), pp.
680
699
.
37.
Tang
,
Y.
,
Xiong
,
Y.
,
Boddeti
,
G. N.
, and
Rosen
,
D. W.
,
2019
, “
Generation of Lattice Structures With Convolution Surface
,”
Proceedings of CAD'19
,
Singapore
,
June 26–29
.
38.
Jin
,
X.
, and
Tai
,
C.-L.
,
2002
, “
Analytical Methods for Polynomial Weighted Convolution Surfaces With Various Kernels
,”
Comput. Graph.
,
26
(
3
), pp.
437
447
.
39.
Nelaturi
,
S.
, and
Shapiro
,
V.
,
2015
, “
Representation and Analysis of Additively Manufactured Parts
,”
Comput. Aided Des.
,
67
, pp.
13
23
.
40.
Larsen
,
E.
,
Gottschalk
,
S.
,
Lin
,
M. C.
, and
Manocha
,
D.
,
1999
, “
Fast Proximity Queries With Swept Sphere Volumes
,” Technical Report 99-018,
Department of Computer Science, University of North Carolina
at
Chapel Hill
.
41.
Hearn
,
D.
,
Baker
,
M. P.
, and
Manocha
,
D.
,
2004
,
Computer Graphics with OpenGL
,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
42.
McMains
,
S. A.
, and
Carlo
,
H. S.
,
2000
, “
Geometric Algorithms and Data Representation for Solid Freeform Fabrication
,” Ph.D. Dissertation,
University of California
,
Berkeley, CA
.
43.
Huang
,
P.
,
Wang
,
C. C.
, and
Chen
,
Y.
,
2014
, “
Algorithms for Layered Manufacturing in Image Space
,”
ASME Advances in Computers and Information in Engineering Research
,
Hong Kong
,
Sept. 1
.
44.
Maple
,
C.
,
2003
, “
Geometric Design and Space Planning Using the Marching Squares and Marching Cube Algorithms
,”
Proceedings of International Conference on Geometric Modeling and Graphics 2003
,
London, UK
,
July 16–18
.
45.
Huang
,
P.
,
Wang
,
C. C. L.
, and
Chen
,
Y.
,
2013
, “
Intersection-Free and Topologically Faithful Slicing of Implicit Solid
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
2
), p.
021009
.
46.
Surazhsky
,
V.
, and
Gotsman
,
C.
,
2003
, “
Explicit Surface Remeshing
,”
Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
,
Aachen Germany
,
June
, pp.
20
30
.
47.
Lorensen
,
W. E.
, and
Cline
,
H. E.
,
1987
, “
Marching Cubes: A High Resolution 3d Surface Construction Algorithm
,”
ACM Trans. Graph.
,
21
(
4
), pp.
163
169
.
48.
Plachetka
,
T.
,
1998
, “
Pov Ray: Persistence of Vision Parallel Raytracer
,”
Proceedings of Spring Conference on Computer Graphics
,
Budmerice, Slovakia
,
Apr. 23–25
, pp.
123
129
.
You do not currently have access to this content.