Abstract

Aiming to redundant parallel mechanism, on the basis of the kinetic energy method, virtual work principle, and perturbation method, the generalized mass matrix and generalized stiffness matrix are obtained, respectively. Two indices on inertial coupling and elastic coupling are defined to measure the decoupling level of the redundant parallel mechanism in terms of two generalized matrices. Furthermore, an algebraic solution method for natural frequency equation of the mechanism is utilized to obtain the natural frequency by means of the Cholesky decomposition method. Then, in order to minimize inertial coupling and elastic coupling and maximize the natural frequency of the mechanism, two indices and natural frequency are taken as objective functions to optimize the structural parameters of the redundant mechanism so that optimal dynamic performance of the mechanism is acquired. Two optimal solutions are selected in the optimization of natural frequency. One is to consider inertial coupling and elastic coupling, the other is to ignore inertial coupling and elastic coupling. Finally, the dynamic performance of the solution considering two indexes is better by comparing the dexterity of the two solutions.

References

1.
Kong X
,
W.
,
2007
,
Type Synthesis of Parallel Mechanisms
, Vol.
33
,
Springer
,
Berlin/Heidelberg
.
2.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, Vol.
128
,
Springer
,
Berlin
,
3.
Li
,
W.
, and
Angeles
,
J.
,
2017
, “
A Novel Three-Loop Parallel Robot With Full Mobility: Kinematics, Singularity, Workspace, and Dexterity Analysis
,”
ASME J. Mech. Robot.
,
9
(
5
), p.
051003
.
4.
Wan
,
Xiao-Jin
,
Li
,
Qinglei
, and
Wang
,
Kai
,
2017
, “
Dimensional Synthesis of a Robotized Cell of Support Fixture
,”
Robot. Comput. Integr. Manuf.
,
48
, pp.
80
92
.
5.
Zhang
,
D.
,
Xi
,
F.
,
Mechefske C
,
M.
, and
Lang S
,
Y.
,
2004
, “
Analysis of Parallel Kinematic Machine With Kinetostatic Modelling Method
,”
Robot. Comput. Integr. Manuf.
,
20
(
2
), pp.
151
165
.
6.
Lian
,
B.
,
Sun
,
T.
,
Song
,
Y.
,
Jin
,
Y.
, and
Price
,
M.
,
2015
, “
Stiffness Analysis and Experiment of a Novel 5-DoF Parallel Kinematic Machine Considering Gravitational Effects
,”
Int. J. Mach. Tools Manuf.
,
95
, pp.
82
96
.
7.
Li
,
Y.
, and
Xu
,
Q.
,
2008
, “
Stiffness Analysis for a 3-PUU Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
43
(
2
), pp.
186
200
.
8.
Wu
,
J.
,
Wang
,
J.
,
Wang
,
L.
,
Li
,
T.
, and
You
,
Z.
,
2009
, “
Study on the Stiffness of a 5-DOF Hybrid Machine Tool With Actuation Redundancy
,”
Mech. Mach. Theory
,
44
(
2
), pp.
289
305
.
9.
Liang
,
D.
,
Song
,
Y.
,
Sun
,
T.
, and
Dong
,
G.
,
2016
, “
Optimum Design of a Novel Redundantly Actuated Parallel Manipulator With Multiple Actuation Modes for High Kinematic and Dynamic Performance
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
631
658
.
10.
Gosselin
,
C.
, and
Angeles
,
J.
,
2002
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
281
290
.
11.
Wu
,
G.
,
Bai
,
S.
, and
Hjørnetc
,
P.
,
2016
, “
Architecture Optimization of a Parallel Schönflies-Motion Robot for Pick-and-Place Applications in a Predefined Workspace
,”
Mech. Mach. Theory
,
106
, pp.
148
165
.
12.
Rezania
,
V.
, and
Ebrahimi
,
S.
,
2017
, “
Dexterity Characterization of the RPR Parallel Manipulator Based on the Local and Global Condition Indices
,”
J. Mech. Sci. Technol.
,
31
(
1
), pp.
335
344
.
13.
Stoughton
,
R. S.
, and
Arai
,
T.
,
1993
, “
A Modified Stewart Platform Manipulator With Improved Dexterity
,”
IEEE Trans. Robot. Autom.
,
9
(
2
), pp.
166
173
.
14.
Angeles
,
J.
, and
Lopez-Cajun
,
C. S.
,
2016
, “
Kinematic Isotropy and the Conditioning Index of Serial Robotic Manipulators
,”
Int. J. Robot. Res.
,
11
(
6
), pp.
560
571
.
15.
Wan
,
X.-J.
,
Yang
,
J.
, and
Zhang
,
Y.
,
2020
, “
Dynamic Performance Optimization of a Novel 8-SPU Parallel Walking Mechanism
,”
ASME J. Comput. Inform. Sci. Eng.
,
20
(
4
), p.
041004
.
16.
Sun
,
T.
,
Song
,
Y.
,
Dong
,
G.
,
Lian
,
B.
, and
Liu
,
J.
,
2012
, “
Optimal Design of a Parallel Mechanism With Three Rotational Degrees of Freedom
,”
Robot. Comput. Integr. Manuf.
,
28
(
4
), pp.
500
508
.
17.
Menon
,
C.
,
Vertechy
,
R.
,
Markt
,
M.
, and
Parenti-Castelli
,
V.
,
2009
, “
Geometrical Optimization of Parallel Mechanisms Based on Natural Frequency Evaluation: Application to a Spherical Mechanism for Future Space Applications
,”
IEEE Trans. Robot.
,
25
(
1
), pp.
12
24
.
18.
Cheng
,
M.
,
Chen
,
Z.
,
Fang
,
Y.
, and
Liu
,
X.
,
2019
, “
Mechanical-Performance-Oriented Optimization Design of Vibration Isolation Platform Based on Parallel Mechanism
,”
J. Vib. Eng.
,
32
(
1
), pp.
1
9
.
19.
Chang, W
.
T.
,
Lin, C
.
C.
, and
Lee, J
.
J.
,
2010
, “
Force Transmissibility Performance of Parallel Manipulators
,”
J. Robotic Syst.
,
20
(
11
), pp.
659
670
.
20.
Lian
,
B.
,
Wang X
,
V.
, and
Wang
,
L.
,
2019
, “
Static and Dynamic Optimization of a Pose Adjusting Mechanism Considering Parameter Changes During Construction
,”
Robot. Comput. Integr. Manuf.
,
59
, pp.
267
277
.
21.
Yao
,
J.
,
Gu
,
W.
,
Feng
,
Z.
,
Chen
,
L.
,
Xu
,
Y.
, and
Zhao
,
Y.
,
2017
, “
Dynamic Analysis and Driving Force Optimization of a 5-DOF Parallel Manipulator With Redundant Actuation
,”
Robot. Comput. Integr. Manuf.
,
48
, pp.
51
58
.
22.
Zhao
,
Y.
,
Feng
,
G.
,
Dong
,
X.
, and
Zhao
,
X.
,
2011
, “
Dynamics Analysis and Characteristics of the 8-PSS Flexible Redundant Parallel Manipulator
,”
Robot. Comput. Integr. Manuf.
,
27
(
5
), pp.
918
928
.
23.
Gosselin
,
C. M.
,
1992
, “
The Optimum Design of Robotic Manipulators Using Dexterity Indices
,”
Robot. Auton. Syst.
,
9
(
4
), pp.
213
226
.
24.
Zargarbashi S
,
H. H.
,
Khan
,
W.
, and
Angeles
,
J.
,
2012
, “
The Jacobian Condition Number as a Dexterity Index in 6R Machining Robots
,”
Robot. Comput. Integr. Manuf.
,
28
(
6
), pp.
694
699
.
25.
Chi
,
Z.
, and
Zhang
,
D.
,
2012
, “
Stiffness Optimization of a Novel Reconfigurable Parallel Kinematic Manipulator
,”
Robotica
,
30
(
PT.3
), pp.
433
447
.
26.
Guo
,
Y.
,
Dong
,
H.
, and
Ke
,
Y.
,
2015
, “
Stiffness-Oriented Posture Optimization in Robotic Machining Applications
,”
Robot. Comput. Integr. Manuf.
,
35
, pp.
69
76
.
27.
Xiao-Jin
,
W.
, and
Hanjie
,
Z.
,
2018
, “
Optimization Design of a Walkable Fixture Mechanism
,”
ASME J. Manuf. Sci. Eng.
,
140
(
8
), p.
081002-1-12
.
28.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism With Actuator Redundancy
,”
IEEE Trans. Robot. Autom.
,
8
(
5
), pp.
644
651
.
29.
Ceccarelli
,
M.
, and
Lanni
,
C.
,
2004
, “
A Multi-objective Optimum Design of General 3R Manipulators for Prescribed Workspace Limits
,”
Mech. Mach. Theory
,
39
(
2
), pp.
119
132
.
30.
Gao
,
Z.
,
Zhang
,
D.
, and
Ge
,
Y.
,
2010
, “
Design Optimization of a Spatial Six Degree-of-Freedom Parallel Manipulator Based on Artificial Intelligence Approaches
,”
Robot. Comput. Integr. Manuf.
,
26
(
2
), pp.
180
189
.
31.
Song
,
Y.
,
Gao
,
H.
,
Sun
,
T.
,
Dong
,
G.
,
Lian
,
B.
, and
Qi
,
Y.
,
2014
, “
Kinematic Analysis and Optimal Design of a Novel 1T3R Parallel Manipulator With an Articulated Travelling Plate
,”
Robot. Comput. Integr. Manuf.
,
30
(
5
), pp.
508
516
.
32.
Jiang
,
Y.
,
Li T
,
M.
, and
Wang L
,
P.
,
2015
, “
Dynamic Modeling and Redundant Force Optimization of a 2-DOF Parallel Kinematic Machine With Kinematic Redundancy
,”
Robot. Comput. Integr. Manuf.
,
32
(
C
), pp.
1
10
.
33.
Sun
,
T.
, and
Lian
,
B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
.
34.
Kelaiaia
,
R.
,
Company
,
O.
, and
Zaatri
,
A.
,
2012
, “
Multiobjective Optimization of Parallel Kinematic Mechanisms by the Genetic Algorithms
,”
Robotica
,
30
(
05
), pp.
783
797
.
35.
Wang
,
D.
,
Wu
,
J.
,
Wang
,
L.
, and
Liu
,
X.
,
2016
, “
Research on the Inertia Coupling Property of a 3-PRS Parallel Robot
,”
Chin. J. Theor. Appl. Mech.
,
48
(
4
), pp.
804
812
.
36.
Sun
,
T.
, and
Yang
,
S.
,
2019
, “
An Approach to Formulate the Hessian Matrix for Dynamic Control of Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
271
281
.
37.
Zhao
,
Q.
,
Wang
,
P.
, and
Huang
,
T.
,
2017
, “
An Inertial Parameter Estimation Method for High-Speed Parallel Robots by Considering Inter-chain Coupling
,”
Tianjin Daxue Xuebao, Ziran Kexue Yu Gongcheng Jishuban
,
50
(
8
), pp.
868
876
.
38.
Sun
,
T.
,
Lian
,
B.
,
Song
,
Y.
, and
Feng
,
L.
,
2019
, “
Elasto-Dynamic Optimization of a 5-DoF Parallel Kinematic Machine Considering Parameter Uncertainty
,”
IEEE/ASME Trans. Mechatron.
,
24
(
1
), pp.
1
12
.
39.
Mo
,
J.
,
Shao Z
,
F.
,
Guan
,
L.
,
Xie
,
F.
, and
Tang
,
X.
,
2017
, “
Dynamic Performance Analysis of the X4 High-Speed Pick-and-Place Parallel Robot
,”
Robot. Comput. Integr. Manuf.
,
46
, pp.
48
57
.
You do not currently have access to this content.