Abstract

Bi-manual (two-handed) actions have shown notable success in rehabilitative and therapeutic applications from the point of motor symmetry. Recent studies have shown that symmetry in actions is attributed to sensorimotor perception than mere co-activation of homologous muscles. In this paper, we present a study of symmetric and asymmetric haptic (specifically force) feedback on human perception and motor action during bi-manual spatial tasks. To the best of our knowledge, ours is the first procedure to specifically test the perceptual aspect of bi-manual actions in contrast to other works that typically characterize the physical/bio-mechanical aspects. Thereby in our experiment, healthy individuals were tasked with stretching a virtual spring using two symmetrically located haptics devices that provide an equal amount of resistive force on each hand while pulling the spring. In this experiment, we implement four kinesthetic conditions, namely (1) feedback on both hands, (2) feedback only on dominant hand, (3) feedback only on non-dominant hand, and (4) no feedback as our control. Our first goal was to determine if there exists a range of spring stiffness in which the individual incorrectly perceives bi-manual forces when the feedback is deactivated on one hand. Subsequently, we also wanted to investigate what range of spring stiffness would lead to such perceptual illusions. Our analysis shows that not only does such a range exist, it is wide enough so as to be potentially utilized in future rehabilitative applications.

References

1.
Piggott
,
L.
,
Wagner
,
S.
, and
Ziat
,
M.
,
2016
, “
Haptic Neurorehabilitation and Virtual Reality for Upper Limb Paralysis: A Review
,”
Crit. Rev. Biomed. Eng.
,
44
(
1–2
), pp.
1
32
.
2.
Afzal
,
M. R.
,
Pyo
,
S.
,
Oh
,
M. -K.
,
Park
,
Y. S.
, and
Yoon
,
J.
,
2018
, “
Evaluating the Effects of Delivering Integrated Kinesthetic and Tactile Cues to Individuals With Unilateral Hemiparetic Stroke During Overground Walking
,”
J. Neuroeng. Rehabil.
,
15
(
1
), p.
33
.
3.
Boian
,
R. F.
,
Deutsch
,
J. E.
,
Lee
,
C. S.
,
Burdea
,
G. C.
, and
Lewis
,
J.
,
2003
, “
Haptic Effects for Virtual Reality-Based Post-Stroke Rehabilitation
,”
11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, HAPTICS 2003
,
Los Angeles, CA
,
Mar. 22–23
, IEEE, pp.
247
253
.
4.
Holden
,
M. K.
,
2005
, “
Virtual Environments for Motor Rehabilitation
,”
Cyberpsychol. Behav.
,
8
(
3
), pp.
187
211
.
5.
Rose
,
T.
,
Nam
,
C. S.
, and
Chen
,
K. B.
,
2018
, “
Immersion of Virtual Reality for Rehabilitation—Review
,”
Appl. Ergon.
,
69
, pp.
153
161
.
6.
Mane
,
R.
,
Chouhan
,
T.
, and
Guan
,
C.
,
2020
, “
Bci for Stroke Rehabilitation: Motor and Beyond
,”
J. Neural Eng.
,
17
(
4
), p.
041001
.
7.
Roelker
,
S. A.
,
Bowden
,
M. G.
,
Kautz
,
S. A.
, and
Neptune
,
R. R.
,
2019
, “
Paretic Propulsion As a Measure of Walking Performance and Functional Motor Recovery Post-Stroke: A Review
,”
Gait Posture
,
68
, pp.
6
14
.
8.
AbdulKareem
,
A. H.
,
Adila
,
A. S.
, and
Husi
,
G.
,
2018
, “
Recent Trends in Robotic Systems for Upper-Limb Stroke Recovery: A Low-Cost Hand and Wrist Rehabilitation Device
,”
2018 2nd International Symposium on Small-Scale Intelligent Manufacturing Systems (SIMS)
,
Cavan, Ireland
,
Apr. 16–18
.
9.
Cancela
,
D. L.
,
Crochi
,
D.
,
Cavalcante
,
F. R.
,
Silva
,
A. P.
,
Martini
,
S. C.
,
Scardovelli
,
T. A.
, and
Boschi
,
S. R.
,
2019
, “
Development a Virtual Game to Stimulate Grip and Pinch Movements
,”
Latin American Conference on Biomedical Engineering
,
Cancun, Mexico
,
Oct. 2–5
, Springer, pp.
1292
1297
.
10.
Volovik
,
M.
,
Borzikov
,
V.
,
Kuznetsov
,
A.
,
Bazarov
,
D.
, and
Polyakova
,
A.
,
2018
, “
Virtual Reality Technology in Complex Medical Rehabilitation of Patients With Disabilities (Review)
,”
Sovremennye tehnologii v medicine
,
10
(
4
), p.
173
.
11.
Li
,
M.
,
Xu
,
G.
,
Xie
,
J.
, and
Chen
,
C.
,
2018
, “
A Review: Motor Rehabilitation After Stroke With Control Based on Human Intent
,”
Proc. Inst. Mech. Eng., Part H: J. Eng. Med.
,
232
(
4
), pp.
344
360
.
12.
Tian
,
Y.
,
2017
, “
Haptic Rendering in 3d Immersive Environments
,”
PhD thesis
.
13.
Ramachandran
,
V. S.
,
Blakeslee
,
S.
, and
Shah
,
N.
,
1998
,
Phantoms in the Brain: Probing the Mysteries of the Human Mind
,
William Morrow New York
,
New York
.
14.
Dunn
,
J.
,
Yeo
,
E.
,
Moghaddampour
,
P.
,
Chau
,
B.
, and
Humbert
,
S.
,
2017
, “
Virtual and Augmented Reality in the Treatment of Phantom Limb Pain: A Literature Review
,”
NeuroRehabilitation
,
40
(
4
), pp.
595
601
.
15.
Akbulut
,
A.
,
Güngör
,
F.
,
Tarakçı
,
E.
,
Çabuk
,
A.
, and
Aydin
,
M. A.
,
2019
, “
Immersive Virtual Reality Games for Rehabilitation of Phantom Limb Pain
,”
2019 Medical Technologies Congress (TIPTEKNO)
,
Izmir, Turkey
,
Oct. 3–5
, IEEE, pp.
1
4
.
16.
Osumi
,
M.
,
Inomata
,
K.
,
Inoue
,
Y.
,
Otake
,
Y.
,
Morioka
,
S.
, and
Sumitani
,
M.
,
2019
, “
Characteristics of Phantom Limb Pain Alleviated With Virtual Reality Rehabilitation
,”
Pain Med.
,
20
(
5
), pp.
1038
1046
.
17.
Kulkarni
,
J.
,
Pettifer
,
S.
,
Turner
,
S.
, and
Richardson
,
C.
,
2019
, “
An Investigation Into the Effects of a Virtual Reality System on Phantom Limb Pain: A Pilot Study
,”
Br. J. Pain
,
14
(
2
), pp.
92
97
.
18.
Patel
,
P.
,
Ivanov
,
D.
,
Bhatt
,
S.
,
Mastorakos
,
G.
,
Birckhead
,
B.
,
Khera
,
N.
, and
Vittone
,
J.
,
2020
, “
Low-Cost Virtual Reality Headsets Reduce Perceived Pain in Healthy Adults: A Multicenter Randomized Crossover Trial
,”
Games for Health Journal
,
9
(
2
), pp.
129
136
.
19.
Mohanty
,
R. R.
,
Adhikari
,
R. R.
, and
Krishnamurthy
,
V. R.
,
2020
, “
Kinesthetic Perceptual Symmetry in Bi-Manual Interactions: An Exploratory Study
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Online
,
Aug. 17–19
, Vol.
83983
.
American Society of Mechanical Engineers
, p.
V009T09A034
.
20.
Chaudhuri
,
S.
, and
Bhardwaj
,
A.
,
2018
,
Introduction
,
Springer Singapore
,
Singapore
, pp.
1
15
.
21.
Fogtmann
,
M. H.
,
Fritsch
,
J.
, and
Kortbek
,
K. J.
,
2008
, “
Kinesthetic Interaction: Revealing the Bodily Potential in Interaction Design
,”
Proceedings of the 20th Australasian Conference on Computer-Human Interaction: Designing for Habitus and Habitat
,
Cairns, Australia
,
Dec. 8–12
, pp.
89
96
.
22.
Bauermeister
,
M.
,
Werner
,
H.
, and
Wapner
,
S.
,
1964
, “
The Effect of Body Tilt on Tactual-kinesthetic Perception of Verticality
,”
Am. J. Psychol.
,
77
(
3
), pp.
451
456
.
23.
Willey
,
C.
,
2018
,
Visual, Vestibular, and Proprioceptive Contributions to Subjective Perception of Vertical
. eScholarship,
University of California
.
24.
Parker
,
J. W.
,
1954
, “
Tactual-Kinesthetic Perception As a Technique for Diagnosing Brain Damage
,”
J. Consulting Psychol.
,
18
(
6
), p.
415
.
25.
Kutlay
,
S.
,
Genc
,
A.
,
Gök
,
H.
,
Küçükdeveci
,
A. A.
2018
, “
Kinaesthetic Ability Training Improves Unilateral Neglect and Functional Outcome in Patients With Stroke: A Randomized Control Trial
,”
J. Rehabilitation Med.
,
50
(
2
), pp.
159
164
.
26.
AbdulKareem
,
A. H.
,
Adila
,
A. S.
, and
Husi
,
G.
,
2018
, “
Recent Trends in Robotic Systems for Upper-Limb Stroke Recovery: A Low-Cost Hand and Wrist Rehabilitation Device
,”
2018 2nd International Symposium on Small-scale Intelligent Manufacturing Systems (SIMS)
,
Cavan, Ireland
,
Apr. 16–18
, pp.
1
6
.
27.
Gibson
,
J. J.
,
2014
,
The Ecological Approach to Visual Perception: Classic Edition
,
Psychology Press
.
28.
Gurari
,
N.
,
Kuchenbecker
,
K. J.
, and
Okamura
,
A. M.
,
2009
, “
Stiffness Discrimination with Visual and Proprioceptive Cues
,”
World Haptics 2009–Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems
,
Salt Lake City, UT
,
Mar. 18–20
, IEEE, pp.
121
126
.
29.
Mohanty
,
R. R.
,
Bohari
,
U. H.
,
Vinayak
, and
Ragan
,
E.
,
2018
, “
Kinesthetically Augmented Mid-Air Sketching of Multi-Planar 3D Curve-Soups
,”
38th Computers and Information in Engineering
,
Quebec, Canada
,
Aug. 26–29
.
30.
Mohanty
,
R. R.
,
Castillo
,
R. M.
,
Ragan
,
E. D.
, and
Krishnamurthy
,
V. R.
,
2019
, “
Investigating Force-Feedback in Mid-Air Sketching of Multi-Planar Three-Dimensional Curve-Soups
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011010
.
31.
Maereg
,
A. T.
,
Nagar
,
A.
,
Reid
,
D.
, and
Secco
,
E. L.
,
2017
, “
Wearable Vibrotactile Haptic Device for Stiffness Discrimination During Virtual Interactions
,”
Front. Rob. AI
,
4
, p.
42
.
32.
Korman
,
M.
,
Teodorescu
,
K.
,
Cohen
,
A.
,
Reiner
,
M.
, and
Gopher
,
D.
,
2012
, “
Effects of Order and Sensory Modality in Stiffness Perception
,”
Presence: Teleoperators and Virtual Environments
,
21
(
3
), pp.
295
304
.
33.
Jeon
,
S.
, and
Choi
,
S.
,
2009
, “
Haptic Augmented Reality: Taxonomy and An Example of Stiffness Modulation
,”
Presence: Teleoperators and Virtual Environments
,
18
(
5
), pp.
387
408
.
34.
Hartmann
,
J.
,
Holz
,
C.
,
Ofek
,
E.
, and
Wilson
,
A. D.
,
2019
, “
Realitycheck: Blending Virtual Environments with Situated Physical Reality
,”
Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems
,
Glasgow, UK
,
May 4–9
, pp.
1
12
.
35.
Flavian
,
C.
,
Ibáñez Sánchez
,
S.
, and
Orús
,
C.
,
2018
, “
The Impact of Virtual, Augmented and Mixed Reality Technologies on the Customer Experience
,”
J. Business Res.
,
100
, pp.
547
560
.
36.
Jones
,
L. A.
, and
Hunter
,
I. W.
,
1990
, “
A Perceptual Analysis of Stiffness
,”
Exp. Brain. Res.
,
79
(
1
), pp.
150
156
.
37.
Villa Salazar
,
D.
,
Pacchierotti
,
C.
,
Girouliere
,
X.
,
Maciel
,
A.
, and
Marchal
,
M.
,
2020
, “
Altering the Stiffness, Friction, and Shape Perception of Tangible Objects in Virtual Reality Using Wearable Haptics
,”
IEEE Trans. Haptics
,
13
(
1
), pp.
167
174
.
38.
Shin
,
S.
, and
Choi
,
S.
,
2018
, “
Effects of Haptic Texture Rendering Modalities on Realism
,”
Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology
,
Tokyo, Japan
,
Nov. 28–Dec. 1
, pp.
1
5
.
39.
Sebastian
,
F.
,
Fu
,
Q.
,
Santello
,
M.
, and
Polygerinos
,
P.
,
2017
, “
Soft Robotic Haptic Interface With Variable Stiffness for Rehabilitation of Neurologically Impaired Hand Function
,”
Front. Rob. AI
,
4
, p.
69
.
40.
Altobelli
,
A.
,
Bianchi
,
M.
,
Serio
,
A.
,
Baud-Bovy
,
G.
,
Gabiccini
,
M.
, and
Bicchi
,
A.
,
2014
, “
Three-digit Grasp Haptic Device With Variable Contact Stiffness for Rehabilitation and Human Grasping Studies
,”
22nd Mediterranean Conference on Control and Automation
,
Palermo, Italy
,
June 16–19
, pp.
346
350
.
41.
Nelson
,
C. A.
,
Nouaille
,
L.
, and
Poisson
,
G.
,
2019
, “Variable Stiffness Mechanism for Robotic Rehabilitation,”
T.
Uhl
, ed.,
Advances in Mechanism and Machine Science, Springer International Publishing
, pp.
1761
1769
.
42.
Liu
,
Y.
,
Guo
,
S.
,
Hirata
,
H.
,
Ishihara
,
H.
, and
Tamiya
,
T.
,
2018
, “
Development of a Powered Variable-Stiffness Exoskeleton Device for Elbow Rehabilitation
,”
Biomed. Microdevices.
,
20
(
3
), p.
64
.
43.
Lieberthal
,
K.
,
Bradshaw
,
E.
,
Cook
,
J.
,
Paterson
,
K.
, and
Kiss
,
Z.
,
2017
, “
Lower Limb Stiffness During Hopping in Runners With Achilles Tendinopathy
,”
J. Sci. Med. Sport
,
20
, p.
e113
.
44.
Pu
,
S.-W.
, and
Chang
,
J.-Y.
,
2019
,
Rehabilitation System with Stiffness Measurement, Sept. 17. US Patent 10, 413, 431
.
45.
Jujjavarapu
,
S. S.
, and
Esfahani
,
E. T.
,
2019
, “
Improving Stability in Upper Limb Rehabilitation Using Variable Stiffness
,”
2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Berlin, Germany
,
July 23–27
, pp.
122
125
.
46.
Zhang
,
Y.
,
Guo
,
S.
,
Cao
,
G.
,
Zhang
,
S.
, and
Liu
,
Y.
,
2016
, “
A Novel Variable Stiffness Actuator-Based Exoskeleton Device for Home Rehabilitation
,”
2016 IEEE International Conference on Mechatronics and Automation
,
Harbin, China
,
Aug. 7–10
, pp.
878
883
.
47.
Carpi
,
F.
,
Frediani
,
G.
,
Gerboni
,
C.
,
Gemignani
,
J.
, and
Rossi
,
D. D.
,
2014
, “
Enabling Variable-stiffness Hand Rehabilitation Orthoses With Dielectric Elastomer Transducers
,”
Med. Eng. Phys.
,
36
(
2
), pp.
205
211
.
48.
Yurkewich
,
A.
,
Kozak
,
I. J.
,
Hebert
,
D.
,
Wang
,
R. H.
, and
Mihailidis
,
A.
,
2020
, “
Hand Extension Robot Orthosis (Hero) Grip Glove: Enabling Independence Amongst Persons With Severe Hand Impairments After Stroke
,”
J. Neuroeng. Rehabil.
,
17
(
1
), pp.
1
17
.
49.
Huaroto
,
J. J.
,
Suàrez
,
E.
,
Vela
,
E. A.
, and
Boubaker
,
O.
,
2020
,
Chapter 8—Wearable Mechatronic Devices for Upper-Limb Amputees
, 1st ed.,
Academic Press
,
Cambridge, MA
, pp.
205
234
.
50.
Gupta
,
A.
,
Singh
,
A.
,
Verma
,
V.
,
Mondal
,
A. K.
, and
Gupta
,
M. K.
,
2020
, “
Developments and Clinical Evaluations of Robotic Exoskeleton Technology for Human Upper-Limb Rehabilitation
,”
Adv. Rob.
,
34
(
15
), pp.
1023
1040
.
51.
Xiloyannis
,
M.
,
Chiaradia
,
D.
,
Frisoli
,
A.
, and
Masia
,
L.
,
2019
, “
Physiological and Kinematic Effects of a Soft Exosuit on Arm Movements
,”
J. Neuroeng. Rehabil.
,
16
(
1
), p.
29
.
52.
Mohanty
,
R. R.
,
Castillo
,
R. M.
,
Ragan
,
E. D.
, and
Krishnamurthy
,
V. R.
,
2020
, “
Kinesthetic Metaphors for Precise Spatial Manipulation: A Study of Object Rotation
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
1
), p.
021010
.
53.
Gurari
,
N.
,
Kuchenbecker
,
K. J.
, and
Okamura
,
A. M.
,
2012
, “
Perception of Springs With Visual and Proprioceptive Motion Cues: Implications for Prosthetics
,”
IEEE Trans. Human-Mach. Syst.
,
43
(
1
), pp.
102
114
.
54.
Mechsner
,
F.
,
Kerzel
,
D.
,
Knoblich
,
G.
, and
Prinz
,
W.
,
2001
, “
Perceptual Basis of Bimanual Coordination
,”
Nature
,
414
(
6859
), pp.
69
73
.
55.
Woodworth
,
R. S.
,
1903
,
Le Mouvement
, Vol.
14
.
Doin
.
56.
Rose
,
D. K.
, and
Winstein
,
C. J.
,
2004
, “
Bimanual Training After Stroke: Are Two Hands Better Than One?
,”
Topics in Stroke Rehabil.
,
11
(
4
), pp.
20
30
.
57.
Kim
,
R. K.
, and
Kang
,
N.
,
2020
, “
Bimanual Coordination Functions Between Paretic and Nonparetic Arms: A Systematic Review and Meta-Analysis
,”
J. Stroke Cerebrovasc. Dis.
,
29
(
2
), p.
104544
.
58.
Lokesh
,
R.
,
2020
, “
Haptic Assistance Strategies for Enhancing the Learning of Kinematically Redundant Motor Tasks
,”
Ph.D. thesis
,
Michigan State University
.
59.
Spencer
,
R. M.
,
Ivry
,
R. B.
,
Cattaert
,
D.
, and
Semjen
,
A.
,
2005
, “
Bimanual Coordination During Rhythmic Movements in the Absence of Somatosensory Feedback
,”
J. Neurophysiol.
,
94
(
4
), pp.
2901
2910
.
60.
Iosa
,
M.
,
Ghooshchy
,
S. G.
,
Morone
,
G.
,
Zoccolotti
,
P.
,
Franceschilli
,
S.
,
Bini
,
F.
,
Marinozzi
,
F.
,
Della Croce
,
U.
,
Paolucci
,
S.
, and
Cereatti
,
A.
,
2020
, “
Visuomotor Integration for Coupled Hand Movements in Healthy Subjects and Patients With Stroke
,”
Front. Bioeng. Biotechnol.
,
8
, pp.
591-1
591-8
.
61.
Hatem
,
S. M.
,
Saussez
,
G.
,
Prist
,
V.
,
Zhang
,
X.
,
Dispa
,
D.
, and
Bleyenheuft
,
Y.
,
2016
, “
Rehabilitation of Motor Function After Stroke: A Multiple Systematic Review Focused on Techniques to Stimulate Upper Extremity Recovery
,”
Front. Human Neurosci.
,
10
, p.
442
.
62.
Latimer
,
C. P.
,
Keeling
,
J.
,
Lin
,
B.
,
Henderson
,
M.
, and
Hale
,
L. A.
,
2010
, “
The Impact of Bilateral Therapy on Upper Limb Function After Chronic Stroke: A Systematic Review
,”
Disabil. Rehabil.
,
32
(
15
), pp.
1221
1231
.
63.
Burgar
,
C. G.
,
Lum
,
P. S.
,
Shor
,
P. C.
,
Van der Loos
,
H. M.
,
2000
, “
Development of Robots for Rehabilitation Therapy: The Palo Alto Va/stanford Experience
,”
J. Rehabil. Res. Dev.
,
37
(
6
), pp.
663
674
.
64.
Patton
,
J. L.
,
Kovic
,
M.
, and
Mussa-Ivaldi
,
F. A.
,
2006
, “
Custom-Designed Haptic Training for Restoring Reaching Ability to Individuals With Poststroke Hemiparesis
,”
J. Rehabil. Res. Dev.
,
43
(
5
), pp.
643
656
.
65.
Lum
,
P. S.
,
Burgar
,
C. G.
,
Shor
,
P. C.
,
Majmundar
,
M.
, and
Van der Loos
,
M.
,
2002
, “
Robot-assisted Movement Training Compared With Conventional Therapy Techniques for the Rehabilitation of Upper-Limb Motor Function After Stroke
,”
Arch. Phys. Med. Rehabil.
,
83
(
7
), pp.
952
959
.
66.
Malabet
,
H. G.
,
Robles
,
R. A.
, and
Reed
,
K. B.
,
2010
, “
Symmetric Motions for Bimanual Rehabilitation
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
5133
5138
.
67.
Liu
,
X.-h.
,
Huai
,
J.
,
Gao
,
J.
,
Zhang
,
Y.
, and
Yue
,
S.-w.
,
2017
, “
Constraint-Induced Movement Therapy in Treatment of Acute and Sub-Acute Stroke: A Meta-Analysis of 16 Randomized Controlled Trials
,”
Neural Regen. Res.
,
12
(
9
), p.
1443
.
68.
Cope
,
N. M.
,
2020
, “
Forced Use Therapy Vs. Standard Treatment for Upper Extremity Rehabilitation in Patients With Subacute Stroke: A Systematic Review and Meta-Analysis
,”
PhD thesis
,
California State University
,
Fresno
.
69.
Wasaka
,
T.
, and
Kakigi
,
R.
,
2012
, “
The Effect of Unpredicted Visual Feedback on Activation in the Secondary Somatosensory Cortex During Movement Execution
,”
BMC Neurosci.
,
13
, p.
138
.
70.
Leonardis
,
D.
,
Tiseni
,
L.
,
Chiaradia
,
D.
, and
Frisoli
,
A.
,
2020
, “
Design of a Twisted String Actuated Haptic Thimble for Cutaneous Force Feedback
,”
The International Conference of IFToMM ITALY
,
Online
,
Sept. 9–11
, Springer, pp.
145
153
.
71.
Wang
,
Y.
,
Chen
,
Z. T.
,
Li
,
H.
,
Cao
,
Z.
,
Luo
,
H.
,
Zhang
,
T.
,
Ou
,
K.
,
Raiti
,
J.
,
Yu
,
C.
,
Patel
,
S.
, and
Shi
,
Y.
,
2020
, “
Movevr: Enabling Multiform Force Feedback in Virtual Reality Using Household Cleaning Robot
”.
CHI ’20, Association for Computing Machinery
, pp.
1
12
.
72.
Romano
,
J. M.
,
Hsiao
,
K.
,
Niemeyer
,
G.
,
Chitta
,
S.
, and
Kuchenbecker
,
K. J.
,
2011
, “
Human-inspired Robotic Grasp Control With Tactile Sensing
,”
IEEE Trans. Rob.
,
27
(
6
), pp.
1067
1079
.
73.
Meli
,
L.
,
Hussain
,
I.
,
Aurilio
,
M.
,
Malvezzi
,
M.
,
O’Malley
,
M. K.
, and
Prattichizzo
,
D.
,
2018
, “
The Hbracelet: A Wearable Haptic Device for the Distributed Mechanotactile Stimulation of the Upper Limb
,”
IEEE Rob. Autom. Lett.
,
3
(
3
), pp.
2198
2205
.
74.
Motamedi
,
M. R.
,
Chossat
,
J. -B.
,
Roberge
,
J. -P.
, and
Duchaine
,
V.
,
2016
, “
Haptic Feedback for Improved Robotic Arm Control During Simple Grasp, Slippage, and Contact Detection Tasks
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
IEEE
, pp.
4894
4900
.
75.
Yunus
,
R.
,
Ali
,
S.
,
Ayaz
,
Y.
,
Khan
,
M.
,
Kanwal
,
S.
,
Akhlaque
,
U.
, and
Nawaz
,
R.
,
2020
, “
Development and Testing of a Wearable Vibrotactile Haptic Feedback System for Proprioceptive Rehabilitation
,”
IEEE Access
,
8
, pp.
35172
35184
.
76.
Dietrich
,
C.
,
Walter-Walsh
,
K.
,
Preißler
,
S.
,
Hofmann
,
G. O.
,
Witte
,
O. W.
,
Miltner
,
W. H.
, and
Weiss
,
T.
,
2012
, “
Sensory Feedback Prosthesis Reduces Phantom Limb Pain: Proof of a Principle
,”
Neurosci. Lett.
,
507
(
2
), pp.
97
100
.
77.
Wijk
,
U.
, and
Carlsson
,
I.
,
2015
, “
Forearm Amputees’ Views of Prosthesis Use and Sensory Feedback
,”
J. Hand Therapy
,
28
(
3
), pp.
269
278
.
78.
Theriault
,
A. R.
,
Nagurka
,
M. L.
, and
Johnson
,
M. J.
,
2012
, “
A Robust Wheel Interface with a Novel Adaptive Controller for Computer/Robot-Assisted Motivating Rehabilitation
,”
ASME/ISCIE 2012 International Symposium on Flexible Automation, American Society of Mechanical Engineers Digital Collection
, pp.
87
94
.
79.
Vergaro
,
E.
,
Casadio
,
M.
,
Squeri
,
V.
,
Giannoni
,
P.
,
Morasso
,
P.
, and
Sanguineti
,
V.
,
2010
, “
Self-adaptive Robot Training of Stroke Survivors for Continuous Tracking Movements
,”
J. Neuroeng. Rehabil.
,
7
(
1
), p.
13
.
80.
Giannoni
,
P.
, and
ME
,
P. M.
,
2009
, “
Robot Therapy of the Upper Limb in Stroke Patients: Preliminary Experiences for the Principle-Based Use of this Technology
,”
Funct. Neurol.
,
24
(
4
), p.
195
.
81.
Colombo
,
R.
,
Sterpi
,
I.
,
Mazzone
,
A.
,
Delconte
,
C.
, and
Pisano
,
F.
,
2012
, “
Taking a Lesson From Patients’ Recovery Strategies to Optimize Training During Robot-Aided Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
20
(
3
), pp.
276
285
.
82.
Emken
,
J. L.
,
Benitez
,
R.
, and
Reinkensmeyer
,
D. J.
,
2007
, “
Human-Robot Cooperative Movement Training: Learning a Novel Sensory Motor Transformation During Walking with Robotic Assistance-as-Needed
,”
J. Neuroeng. Rehabil.
,
4
(
1
), p.
8
.
83.
Lo
,
A. C.
,
Guarino
,
P. D.
,
Richards
,
L. G.
,
Haselkorn
,
J. K.
,
Wittenberg
,
G. F.
,
Federman
,
D. G.
,
Ringer
,
R. J.
,
Wagner
,
T. H.
,
Krebs
,
H. I.
,
Volpe
,
B. T.
, and
Bever Jr
,
C. T.
,
2010
, “
Robot-Assisted Therapy for Long-Term Upper-Limb Impairment After Stroke
,”
N. Engl. J. Med.
,
362
(
19
), pp.
1772
1783
.
84.
Loureiro
,
R. C.
,
Harwin
,
W. S.
,
Nagai
,
K.
, and
Johnson
,
M.
,
2011
, “
Advances in Upper Limb Stroke Rehabilitation: A Technology Push
,”
Med. Biol. Eng. Comput.
,
49
(
10
), p.
1103
.
85.
Gordon
,
N. F.
,
Gulanick
,
M.
,
Costa
,
F.
,
Fletcher
,
G.
,
Franklin
,
B. A.
,
Roth
,
E. J.
, and
Shephard
,
T.
,
2004
, “
Physical Activity and Exercise Recommendations for Stroke Survivors: An American Heart Association Scientific Statement From the Council on Clinical Cardiology, Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention; The Council on Cardiovascular Nursing; The Council on Nutrition, Physical Activity, and Metabolism; and The Stroke Council
,”
Circulation
,
109
(
16
), pp.
2031
2041
.
86.
Theriault
,
A.
,
Nagurka
,
M.
, and
Johnson
,
M. J.
,
2013
, “
Design and Development of An Affordable Haptic Robot With Force-Feedback and Compliant Actuation to Improve Therapy for Patients With Severe Hemiparesis
,”
IEEE Trans. Haptics
,
7
(
2
), pp.
161
174
.
87.
Broeren
,
J.
,
Rydmark
,
M.
, and
Sunnerhagen
,
K. S.
,
2004
, “
Virtual Reality and Haptics As a Training Device for Movement Rehabilitation After Stroke: A Single-Case Study
,”
Arch. Phys. Med. Rehabil.
,
85
(
8
), pp.
1247
1250
.
88.
Regazzoni
,
D.
,
Rizzi
,
C.
, and
Vitali
,
A.
,
2018
, “
Virtual Reality Applications: Guidelines to Design Natural User Interface
,”
38th Computers and Information in Engineering Conference of International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
1B
.
89.
Yoo
,
J.-C.
, and
Han
,
T. H.
,
2009
, “
Fast Normalized Cross-Correlation
,”
Circuits, Syst. Signal Process.
,
28
(
6
), p.
819
.
90.
Wikipedia contributors
,
2020
Pearson Correlation Coefficient — Wikipedia, the Free Encyclopedia
. https://en.wikipedia.org/w/index.php?title=Pearson_correlation_coefficient&oldid=979594094
91.
Babik
,
I.
, and
Michel
,
G. F.
,
2016
, “
Development of Role-differentiated Bimanual Manipulation in Infancy: Part 2. Hand Preferences for Object Acquisition and RDBM–continuity Or Discontinuity?
,”
Dev. Psychobiol.
,
58
(
2
), pp.
257
267
.
92.
Sherwood
,
D. E.
,
1994
, “
Hand Preference, Practice Order, and Spatial Assimilations in Rapid Bimanual Movement
,”
J. Motor Behav.
,
26
(
2
), pp.
123
134
.
93.
Marteniuk
,
R. G.
,
MacKenzie
,
C. L.
, and
Baba
,
D. M.
,
1984
, “
Bimanual Movement Control: Information Processing and Interaction Effects
,”
The Quarterly Journal of Experimental Psychology Section A
,
36
(
2
), pp.
335
365
.
94.
Rose
,
D. K.
, and
Winstein
,
C. J.
,
2004
, “
Bimanual Training After Stroke: Are Two Hands Better Than One?
,”
Topics in Stroke Rehabil.
,
11
(
4
), pp.
20
30
.
95.
Di Luca
,
M.
,
Knörlein
,
B.
,
Ernst
,
M. O.
, and
Harders
,
M.
,
2011
, “
Effects of Visual–haptic Asynchronies and Loading–unloading Movements on Compliance Perception
,”
Brain. Res. Bull.
,
85
(
5
), pp.
245
259
.
Presence: Brian, Virtual Reality and Robots
.
You do not currently have access to this content.