Abstract

The simulation of complex geometries and non-linear deformation has been a challenge for standard simulation methods. There has traditionally been a trade-off between performance and accuracy. With the popularity of additive manufacturing and the new design space it enables, the challenges are even more prevalent. Additionally, multiple additive manufacturing techniques now allow hyperelastic materials as raw material for fabrication and multi-material capabilities. This allows designers more freedom but also introduces new challenges for control and simulation of the printed parts. In this paper, a novel approach to implementing non-linear material capabilities is devised with negligible additional computations for geometry-based methods. Material curves are fitted with a polynomial expression, which can determine the tangent modulus, or stiffness, of a material based on strain energy. The moduli of all elements are compared to determine relative shape factors used to establish an element’s blended shape. This process is done dynamically to update a material’s stiffness in real-time, for any number of materials, regardless of linear or non-linear material curves.

References

1.
Liu
,
T.
,
Bouaziz
,
S.
, and
Kavan
,
L.
,
2017
, “
Quasi-Newton Methods for Real-Time Simulation of Hyperelastic Materials
,”
ACM Trans. Graph.
,
36
(
4
), pp.
1
16
.
2.
Duriez
,
C.
,
Coevoet
,
E.
,
Largilliere
,
F.
,
Morales-Bieze
,
T.
,
Zhang
,
Z.
,
Sanz-Lopez
,
M.
,
Carrez
,
B.
,
Marchal
,
D.
,
Goury
,
O.
, and
Dequidt
,
J.
,
2016
, “
Framework for Online Simulation of Soft Robots With Optimization-Based Inverse Model
,”
IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots
,
San Francisco, CA
,
Dec. 13
, pp.
111
118
.
3.
Hiller
,
J. D.
, and
Lipson
,
H.
,
2012
, “
Dynamic Simulation of Soft Heterogeneous Objects
,” CoRR, abs/1212.2845.
4.
Chenevier
,
J.
,
González
,
D.
,
Aguado
,
J. V.
,
Chinesta
,
F.
, and
Cueto
,
E.
,
2018
, “
Reduced-Order Modeling of Soft Robots
,”
PLoS ONE.
,
13
(
2
), pp.
1
15
.
5.
Bender
,
J.
,
Müller
,
M.
,
Otaduy
,
M. A.
,
Teschner
,
M.
, and
Macklin
,
M.
,
2014
, “
A Survey on Position-Based Simulation Methods in Computer Graphics
,”
Comput. Graph. Forum
,
33
(
6
), pp.
228
251
.
6.
Kwok
,
T.-H.
, and
Chen
,
Y.
,
2017
, “
Geometry-Driven Finite Element for Four-Dimensional Printing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
11
), p.
111006
.
7.
Fang
,
G.
,
Matte
,
C.
,
Scharff
,
R. B. N.
,
Kwok
,
T.
, and
Wang
,
C. C. L.
,
2020
, “
Kinematics of Soft Robots by Geometric Computing
,”
IEEE Trans. Rob.
,
36
(
4
), pp.
1272
1286
.
8.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T. B.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3d-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
9.
Odhner
,
L. U.
,
Ma
,
R. R.
, and
Dollar
,
A. M.
,
2013
,
Experiments in Underactuated In-Hand Manipulation
, Vol.
88
,
Springer International Publishing
,
Heidelberg
, pp.
27
40
.
10.
Tavakoli
,
M.
, and
de Almeida
,
A. T.
,
2014
, “
Adaptive Under-Actuated Anthropomorphic Hand: Isr-Softhand
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14
, pp.
1629
1634
.
11.
Schmitt
,
F.
,
Piccin
,
O.
,
Barbé
,
L.
, and
Bayle
,
B.
,
2018
, “
Soft Robots Manufacturing: A Review
,”
Front. Rob. AI
,
5
, p.
84
.
12.
Elyasi
,
N.
,
Taheri
,
K. K.
,
Narooei
,
K.
, and
Taheri
,
A. K.
,
2017
, “
A Study of Hyperelastic Models for Predicting the Mechanical Behavior of Extensor Apparatus
,”
Biomech. Model. Mechanobiol.
,
16
(
3
), pp.
1077
1093
.
13.
Faure
,
F.
,
Duriez
,
C.
,
Delingette
,
H.
,
Allard
,
J.
,
Gilles
,
B.
,
Marchesseau
,
S.
,
Talbot
,
H.
,
Courtecuisse
,
H.
,
Bousquet
,
G.
,
Peterlik
,
I.
, and
Cotin
,
S.
,
2012
,
SOFA: A Multi-Model Framework for Interactive Physical Simulation
,
Springer Berlin Heidelberg
,
Berlin
, pp.
283
321
.
14.
Chen
,
L.
,
Yang
,
C.
,
Wang
,
H.
,
Branson
,
D. T.
,
Dai
,
J. S.
, and
Kang
,
R.
,
2018
, “
Design and Modeling of a Soft Robotic Surface With Hyperelastic Material
,”
Mech. Mach. Theory
,
130
, pp.
109
122
.
15.
Zhang
,
H.
,
Kumar
,
A. S.
,
Fuh
,
J. Y. H.
, and
Wang
,
M. Y.
,
2018
, “
Topology Optimized Design, Fabrication and Evaluation of a Multimaterial Soft Gripper
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, It
,
Apr. 24
, pp.
424
430
.
16.
Largilliere
,
F.
,
Verona
,
V.
,
Coevoet
,
E.
,
Sanz-Lopez
,
M.
,
Dequidt
,
J.
, and
Duriez
,
C.
,
2015
, “
Real-Time Control of Soft-Robots Using Asynchronous Finite Element Modeling
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26
, pp.
2550
2555
.
17.
Cheney
,
N.
,
MacCurdy
,
R.
,
Clune
,
J.
, and
Lipson
,
H.
,
2014
, “
Unshackling Evolution: Evolving Soft Robots with Multiple Materials and a Powerful Generative Encoding
,”
SIGEVOlution
,
7
(
1
), pp.
11
23
.
18.
Goulette
,
F.
, and
Chen
,
Z.-W.
,
2015
, “
Fast Computation of Soft Tissue Deformations in Real-Time Simulation With Hyper-Elastic Mass Links
,”
Comput. Methods Appl. Mech. Eng.
,
295
, pp.
18
38
.
19.
Brandt
,
C.
,
Eisemann
,
E.
, and
Hildebrandt
,
K.
,
2018
, “
Hyper-Reduced Projective Dynamics
,”
ACM Trans. Graph.
,
37
(
4
), pp.
80:1
80:13
.
20.
Xu
,
H.
,
Sin
,
F.
,
Zhu
,
Y.
, and
Barbič
,
J.
,
2015
, “
Nonlinear Material Design Using Principal Stretches
,”
ACM Trans. Graph.
,
34
(
4
), pp.
1
11
.
21.
Smith
,
B.
,
Goes
,
F. D.
, and
Kim
,
T.
,
2018
, “
Stable Neo-Hookean Flesh Simulation
,”
ACM Trans. Graph.
,
37
(
2
), pp.
12:1
12:15
.
22.
Mendizabal
,
A.
,
Márquez-Neila
,
P.
, and
Cotin
,
S.
,
2020
, “
Simulation of Hyperelastic Materials in Real-Time Using Deep Learning
,”
Med. Image Anal.
,
59
, p.
101569
.
23.
Müller
,
M.
,
Heidelberger
,
B.
,
Hennix
,
M.
, and
Ratcliff
,
J.
,
2007
, “
Position Based Dynamics
,”
J. Vis. Commun. Image Represent
,
18
(
2
), pp.
109
118
.
24.
Shapira
,
M.
, and
Rappoport
,
A.
,
1995
, “
Shape Blending Using the Star-Skeleton Representation
,”
IEEE Comput. Graph. Appl.
,
15
(
2
), pp.
44
50
.
25.
Sorkine
,
O.
, and
Alexa
,
M.
,
2007
, “
As-Rigid-as-Possible Surface Modeling
,”
Proceedings of EUROGRAPHICS/ACM SIGGRAPH Symposium on Geometry Processing
,
Barcelona, Spain
,
July 4
.
26.
Jin
,
S.
, and
Zhang
,
Y.
,
2014
, “
Deformation With Enforced Metrics on Length, Area and Volume
,”
Comput. Graph. Forum
,
33
(
2
), pp.
429
438
.
27.
Liu
,
L.
,
Zhang
,
L.
,
Xu
,
Y.
,
Gotsman
,
C.
, and
Gortler
,
S. J.
,
2008
, “
A Local/Global Approach to Mesh Parameterization
,”
Proceedings of the Symposium on Geometry Processing, SGP’08
,
Copenhagen, Denmark
,
July 2
, pp.
1495
1504
.
28.
Bouaziz
,
S.
,
Deuss
,
M.
,
Schwartzburg
,
Y.
,
Weise
,
T.
, and
Pauly
,
M.
,
2012
, “
Shape-Up: Shaping Discrete Geometry With Projections
,”
Comput. Graph. Forum
,
31
(
5
), pp.
1657
1667
.
29.
Kwok
,
T. H.
,
Wan
,
W.
,
Pan
,
J.
,
Wang
,
C. C. L.
,
Yuan
,
J.
,
Harada
,
K.
, and
Chen
,
Y.
,
2016
, “
Rope Caging and Grasping
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16
, pp.
1980
1986
.
30.
Khajehsaeid
,
H.
,
Arghavani
,
J.
, and
Naghdabadi
,
R.
,
2013
, “
A Hyperelastic Constitutive Model for Rubber-Like Materials
,”
Eur. J. Mech. A/Solids
,
38
, pp.
144
151
.
31.
Renaud
,
C.
,
Cros
,
J.-M.
,
Feng
,
Z.-Q.
, and
Yang
,
B.
,
2009
, “
The Yeoh Model Applied to the Modeling of Large Deformation Contact/Impact Problems
,”
Int. J. Impact Eng.
,
36
(
5
), pp.
659
666
.
32.
Chao
,
I.
,
Pinkall
,
U.
,
Sanan
,
P.
, and
Schröder
,
P.
,
2010
, “
A Simple Geometric Model for Elastic Deformations
,”
ACM Trans. Graph.
,
29
(
4
), pp.
1
6
.
33.
Ogden
,
R. W.
,
1972
, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci.
,
326
(
1567
), pp.
565
584
.
34.
Leung
,
Y.-S.
,
Kwok
,
T.-H.
,
Mao
,
H.
, and
Chen
,
Y.
,
2019
, “
Digital Material Design Using Tensor-Based Error Diffusion for Additive Manufacturing
,”
Comput. Aided Des.
,
114
, pp.
224
235
.
You do not currently have access to this content.