Abstract

Technologies for material defect detection/metrology are often based on measuring the interactions between defects and waves. These interactions frequently create artifacts that skew the quantitative character of the relevant measurements. Since defects can have a significant impact on the functional behavior of the materials and structures they are embedded in, accurate knowledge of their geometric shape and size is necessary. Responding to this need, the present work introduces preliminary efforts toward a multiscale modeling and simulation framework for capturing the interactions of waves with materials bearing defect ensembles. It is first shown that conventional approaches such as ray tracing result in excessive geometric errors. Instead, a more robust method employing solutions to the wave equation (calculated using the Finite Element Method) is developed. Although the use of solutions to the general wave equation permits application of the method to many wave-based defect detection technologies, this work focuses exclusively on the application to X-ray computed tomography (XCT). A general parameterization of defect geometries based on superquadratic functions is also introduced, and the interactions of defects modeled in this fashion with X-rays are investigated. A synthetic two-dimensional demonstration problem is presented. It is shown that the combination of parameterization and modeling techniques allows the recovery of an accurate, artifact-free defect geometry utilizing classical inverse methods. The path forward to a more complete realization of this technology, including extensions to other wave-based technologies, three-dimensional problem domains, and data derived from physical experiments is outlined.

References

1.
Macpherson
,
A.
,
2012
,
Atomic Mechanics of Solids
,
Elsevier Science
.
ISSN
, Amsterdam, The Netherlands.
2.
Murakami
,
Y.
,
2012
, “
Material Defects as the Basis of Fatigue Design
,”
Int. J. Fatigue.
,
41
, pp.
2
10
.
Fatigue Design & Material Defects
.
3.
Schmerr
,
L. W.
,
2016
,
Fundamentals of Ultrasonic Nondestructive Evaluation
,
Springer
,
New York
.
4.
Schmerr
,
L.
, and
Song
,
J.-S.
,
2007
,
Ultrasonic Nondestructive Evaluation Systems
,
Springer
,
New York
.
5.
Zhang
,
J.
,
Drinkwater
,
B. W.
,
Wilcox
,
P. D.
, and
Hunter
,
A. J.
,
2010
, “
Defect Detection Using Ultrasonic Arrays: The Multi-mode Total Focusing Method
,”
NDT Int.
,
43
(
2
), pp.
123
133
.
6.
Maldague
,
X.
, and
Marinetti
,
S.
,
1996
, “
Pulse Phase Infrared Thermography
,”
J. Appl. Phys.
,
79
(
5
), pp.
2694
2698
.
7.
Maldague
,
X.
,
2000
, “
Applications of Infrared Thermography in Nondestructive Evaluation
,”
Trends Opt. Nondestruct. Testing
,
1
(
1
), pp.
591
609
.
8.
Maldague
,
X. P.
,
2012
,
Nondestructive Evaluation of Materials by Infrared Thermography
,
Springer Science & Business Media
,
Berlin, Germany
.
9.
Hung
,
Y.
,
1982
, “
Shearography: A New Optical Method for Strain Measurement and Nondestructive Testing
,”
Opt. Eng.
,
21
(
3
), p.
213391
.
10.
Francis
,
D.
,
Tatam
,
R.
, and
Groves
,
R.
,
2010
, “
Shearography Technology and Applications: a Review
,”
Meas. Sci. Technol.
,
21
(
10
), p.
102001
.
11.
Ruuvzek
,
R.
,
Lohonka
,
R.
, and
Jiron
,
J.
,
2006
, “
Ultrasonic C-scan and Shearography Ndi Techniques Evaluation of Impact Defects Identification
,”
NDT Int.
,
39
(
2
), pp.
132
142
.
12.
Kessler
,
S. S.
,
Spearing
,
S. M.
, and
Soutis
,
C.
,
2002
, “
Damage Detection in Composite Materials Using Lamb Wave Methods
,”
Smart Mater. Struct.
,
11
(
2
), p.
269
.
13.
Leonard
,
K. R.
,
Malyarenko
,
E. V.
, and
Hinders
,
M. K.
,
2002
, “
Ultrasonic Lamb Wave Tomography
,”
Inverse Prob.
,
18
(
6
), p.
1795
.
14.
Gibson
,
A.
, and
Popovics
,
J. S.
,
2005
, “
Lamb Wave Basis for Impact-echo Method Analysis
,”
J. Eng. Mech.
,
131
(
4
), pp.
438
443
.
15.
Elliott
,
J. C.
, and
Dover
,
S. D.
,
1982
, “
X-ray Microtomography
,”
J. Microsc.
,
126
(
2
), pp.
211
213
.
16.
Ruegsegger
,
P.
,
Koller
,
B.
, and
Muller
,
R.
,
1996
, “
A Microtomographic System for the Nondestructive Evaluation of Bone Architecture
,”
Calcif. Tissue. Int.
,
58
(
1
), pp.
24
29
.
17.
Buffiere
,
J.-Y.
,
Ferrie
,
E.
,
Proudhon
,
H.
, and
Ludwig
,
W.
,
2006
, “
Three-Dimensional Visualisation of Fatigue Cracks in Metals Using High Resolution Synchrotron X-ray Micro-tomography
,”
Mater. Sci. Technol.
,
22
(
9
), pp.
1019
1024
.
18.
Ainsworth
,
R.
,
1984
, “
The Assessment of Defects in Structures of Strain Hardening Material
,”
Eng. Fract. Mech.
,
19
(
4
), pp.
633
642
.
19.
Ph Papaelias
,
M.
,
Roberts
,
C.
, and
Davis
,
C.
,
2008
, “
A Review on Non-destructive Evaluation of Rails: State-of-the-art and Future Development
,”
Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Trans.
,
222
(
4
), pp.
367
384
.
20.
Marrow
,
T.
,
Buffiere
,
J.-Y.
,
Withers
,
P.
,
Johnson
,
G.
, and
Engelberg
,
D.
,
2004
, “
High Resolution X-ray Tomography of Short Fatigue Crack Nucleation in Austempered Ductile Cast Iron
,”
Int. J. Fatigue.
,
26
(
7
), pp.
717
725
.
21.
Nicoletto
,
G.
,
Konečná
,
R.
, and
Fintova
,
S.
,
2012
, “
Characterization of Microshrinkage Casting Defects of Al–si Alloys by X-ray Computed Tomography and Metallography
,”
Int. J. Fatigue.
,
41
, pp.
39
46
.
22.
Rosado
,
L. S.
,
Santos
,
T. G.
,
Piedade
,
M.
,
Ramos
,
P. M.
, and
Vilaça
,
P.
,
2010
, “
Advanced Technique for Non-destructive Testing of Friction Stir Welding of Metals
,”
Measurement
,
43
(
8
), pp.
1021
1030
.
23.
Adams
,
R.
, and
Cawley
,
P.
,
1988
, “
A Review of Defect Types and Nondestructive Testing Techniques for Composites and Bonded Joints
,”
NDT Int.
,
21
(
4
), pp.
208
222
.
24.
Gholizadeh
,
S.
,
2016
, “
A Review of Non-destructive Testing Methods of Composite Materials
,”
Proc. Struct. Int.
,
1
, pp.
50
57
.
25.
Kaiser
,
H.
,
Karbhari
,
V.
, and
Sikorsky
,
C.
,
2004
, “
Non-Destructive Testing Techniques for RP Rehabilitated Concrete. II: An Assessment
,”
Int. J. Mater. Product Tech.
,
21
(
5
), pp.
385
401
.
26.
Amenabar
,
I.
,
Lopez
,
F.
, and
Mendikute
,
A.
,
2013
, “
In Introductory Review to the Non-Destructive Testing of Composite Mater
,”
J. Infrared., Millimeter., Terahertz. Waves.
,
34
(
2
), pp.
152
169
.
27.
Milne
,
J.
, and
Reynolds
,
W.
,
1985
, “The Non-Destructive Evaluation of Composites and Other Materials by Thermal Pulse Video Thermography,”
Thermosense VII: Thermal Infrared Sensing for Diagnostics and Control
,
A. G.
Kantsios
, ed., Vol.
520
,
International Society for Optics and Photonics
,
Cambridge, MA
, pp.
119
122
.
28.
Hung
,
Y.
,
1996
, “
Shearography for Non-Destructive Evaluation of Composite Structures
,”
Optics Lasers Eng.
,
24
(
2–3
), pp.
161
182
.
29.
Chen
,
H.
,
Guo
,
F.
,
Liu
,
Y.
,
Huang
,
T.
,
Zheng
,
B.
,
Ananth
,
N.
,
Xu
,
Z.
,
Gao
,
W.
, and
Gao
,
C.
,
2017
, “
A Defect-Free Principle for Advanced Graphene Cathode of Aluminum-ion Battery
,”
Adv. Mater.
,
29
(
12
), p.
1605958
.
30.
Fisher
,
C. A.
,
Kuganathan
,
N.
, and
Islam
,
M. S.
,
2013
, “
Defect Chemistry and Lithium-Ion Migration in Polymorphs of the Cathode Material Li2 MnSiO4
,”
J. Mater. Chem. A.
,
1
(
13
), pp.
4207
4214
.
31.
Kawamura
,
T.
,
Sano
,
H.
,
Furuta
,
M.
,
Yoshioka
,
T.
, and
Miyata
,
Y.
,
1994
, “
Defect Detection and Defect Removal Apparatus of Thin Film Electronic Device
,”
Nov. 15. US Patent No. 5,365,034
.
32.
Moore
,
T. D.
,
Vanderstraeten
,
D.
, and
Forssell
,
P. M.
,
2002
, “
Three-Dimensional X-ray Laminography as a Tool for Detection and Characterization of Bga Package Defects
,”
IEEE Trans. Components Pack. Technol.
,
25
(
2
), pp.
224
229
.
33.
e Silva
,
J. M. d. S.
,
Zanette
,
I.
,
Noël
,
P. B.
,
Cardoso
,
M. B.
,
Kimm
,
M. A.
, and
Pfeiffer
,
F.
,
2015
, “
Three-Dimensional Non-Destructive Soft-Tissue Visualization with X-ray Staining Micro-tomography
,”
Sci. Rep.
,
5
(
1
), pp.
1
7
.
34.
Tafforeau
,
P.
,
Boistel
,
R.
,
Boller
,
E.
,
Bravin
,
A.
,
Brunet
,
M.
,
Chaimanee
,
Y.
,
Cloetens
,
P.
,
Feist
,
M.
,
Hoszowska
,
J.
,
Jaeger
,
J.J.
,
Kay
,
R.F.
,
Lazzari
,
V.
,
Marivaux
,
L.
,
Nel
,
A.
,
Nemoz
,
C.
,
Thibault
,
X.
,
Vignaud
,
P.
, and
Zabler
,
S.
,
2006
, “
Applications of X-ray Synchrotron Microtomography for Non-Destructive 3d Studies of Paleontological Specimens
,”
Appl. Phys. A.
,
83
(
2
), pp.
195
202
.
35.
Schatzki
,
T.
,
Haff
,
R.
,
Young
,
R.
,
Can
,
I.
,
Le
,
L.
, and
Toyofuku
,
N.
,
1997
, “
Defect Detection in Apples by Means of X-ray Imaging
,”
Trans. ASAE
,
40
(
5
), pp.
1407
1415
.
36.
Meinlschmidt
,
P.
,
2005
, “
Thermographic Detection of Defects in Wood and Wood-Based Materials
,”
14th International Symposium of Nondestructive Testing of Wood
,
Honnover
,
Germany
,
May 2–4
, pp.
1
6
.
37.
Steuben
,
J. C.
,
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Graber
,
B. D.
, and
Birnbaum
,
A. J.
,
2020
, “
Multiscale Tomographic Wave-Matter Interaction Modeling to Enable Artifact-Free Material Defect Reconstruction
,”
ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Virtual Conference,
Aug. 17–19
, p. V009T09A010.
38.
Radon
,
J.
,
1986
, “
On the Determination of Functions From Their Integral Values Along Certain Manifolds
,”
IEEE Trans. Med. Imaging
,
5
(
4
), pp.
170
176
.
39.
Maire
,
E.
, and
Withers
,
P. J.
,
2014
, “
Quantitative X-ray Tomography
,”
Int. Mater. Rev.
,
59
(
1
), pp.
1
43
.
40.
Durrani
,
T.
, and
Bisset
,
D.
,
1984
, “
The Radon Transform and Its Properties
,”
Geophysics
,
49
(
8
), pp.
1180
1187
.
41.
Yuasa
,
T.
,
Akiba
,
M.
,
Takeda
,
T.
,
Kazama
,
M.
,
Hoshino
,
A.
,
Watanabe
,
Y.
,
Hyodo
,
K.
,
Dilmanian
,
F. A.
,
Akatsuka
,
T.
, and
Itai
,
Y.
,
1997
, “
Reconstruction Method for Fluorescent X-ray Computed Tomography by Least-squares Method Using Singular Value Decomposition
,”
IEEE. Trans. Nucl. Sci.
,
44
(
1
), pp.
54
62
.
42.
Rantala
,
M.
,
Vanska
,
S.
,
Jarvenpaa
,
S.
,
Kalke
,
M.
,
Lassas
,
M.
,
Moberg
,
J.
, and
Siltanen
,
S.
,
2006
, “
Wavelet-Based Reconstruction for Limited-Angle X-ray Tomography
,”
IEEE Trans. Med. Imaging
,
25
(
2
), pp.
210
217
.
43.
Wang
,
J.
,
Li
,
T.
,
Lu
,
H.
, and
Liang
,
Z.
,
2006
, “
Penalized Weighted Least-Squares Approach to Sinogram Noise Reduction and Image Reconstruction for Low-Dose X-Ray Computed Tomography
,”
IEEE Trans. Med. Imaging
,
25
(
10
), pp.
1272
1283
.
44.
Gupta
,
H.
,
Jin
,
K. H.
,
Nguyen
,
H. Q.
,
McCann
,
M. T.
, and
Unser
,
M.
,
2018
, “
CNN-Based Projected Gradient Descent for Consistent Ct Image Reconstruction
,”
IEEE Trans. Med. Imaging
,
37
(
6
), pp.
1440
1453
.
45.
Hsieh
,
J.
,
2003
,
Computed Tomography: Principles, Design, Artifacts, and Recent Advances
(
SPIE Press monograph
),
SPIE Press
,
Bellingham, WA
.
46.
Herman
,
G.
,
2009
,
Fundamentals of Computerized Tomography: Image Reconstruction From Projections
(
Advances in Computer Vision and Pattern Recognition
),
Springer
,
London
.
47.
Dasch
,
C. J.
,
1992
, “
One-Dimensional Tomography: A Comparison of Abel, Onion-Peeling, and Filtered Backprojection Methods
,”
Appl. Opt.
,
31
(
8
), pp.
1146
1152
.
48.
Katsevich
,
A.
,
2004
, “
An Improved Exact Filtered Backprojection Algorithm for Spiral Computed Tomography
,”
Adv. Appl. Math.
,
32
(
4
), pp.
681
697
.
49.
Jin
,
P.
,
Bouman
,
C. A.
, and
Sauer
,
K. D.
,
2013
, “
A Method for Simultaneous Image Reconstruction and Beam Hardening Correction
,”
2013 IEEE Nuclear Science Symposium and Medical Imaging Conference (2013 NSS/MIC)
,
Seoul, South Korea
,
Oct. 27–Nov. 2
,
IEEE
, pp.
1
5
.
50.
Boas
,
F. E.
, and
Fleischmann
,
D.
,
2011
, “
Evaluation of Two Iterative Techniques for Reducing Metal Artifacts in Computed Tomography
,”
Radiology
,
259
(
3
), pp.
894
902
.
51.
Lyra
,
M.
, and
Ploussi
,
A.
,
2011
, “
Filtering in Spect Image Reconstruction
,”
Int. J. Biomed. Imaging
,
2011
, p.
693795
.
52.
Amestoy
,
P.
,
Buttari
,
A.
,
L’Excellent
,
J.-Y.
, and
Mary
,
T.
,
2019
, “
Performance and Scalability of the Block Low-Rank Multifrontal Factorization on Multicore Architectures
,”
ACM Trans. Math. Software
,
45
, pp.
2:1
2:26
.
53.
Xue
,
L.
,
Suzuki
,
H.
,
Ohtake
,
Y.
,
Fujimoto
,
H.
,
Abe
,
M.
,
Sato
,
O.
, and
Takatsuji
,
T.
,
2015
, “
Numerical Analysis of the Feldkamp–Davis–Kress Effect on Industrial X-Ray Computed Tomography for Dimensional Metrology
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
2
), p.
021008
.
54.
Shammaa
,
H.
,
Suzuki
,
H.
, and
Ohtake
,
Y.
,
2011
, “
Creeping Contours: A Multilabel Image Segmentation Method for Extracting Boundary Surfaces of Parts in Volumetric Images
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
1
), p.
011007
.
55.
de Boor
,
C.
,
2001
,
A Practical Guide to Splines
(
Applied Mathematical Sciences
),
Springer
,
New York
.
56.
Podlozhnyuk
,
A.
,
Pirker
,
S.
, and
Kloss
,
C.
,
2017
, “
Efficient Implementation of Superquadric Particles in Discrete Element Method Within An Open-source Framework
,”
Comput. Particle Mech.
,
4
(
1
), pp.
101
118
.
57.
Michopoulos
,
J. G.
, and
Iliopoulos
,
A.
,
2013
, “
Complete High Dimensional Inverse Characterization of Fractal Surfaces and Volumes
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
1
), p.
011001
.
58.
Levoy
,
M.
,
1990
, “
Efficient Ray Tracing of Volume Data
,”
ACM Trans. Graphics (TOG)
,
9
(
3
), pp.
245
261
.
59.
Schweiger
,
M.
, and
Arridge
,
S. R.
,
2014
, “
The Toast++ Software Suite for Forward and Inverse Modeling in Optical Tomography
,”
J. Biomed. Opt.
,
19
(
4
), p.
040801
.
60.
Steuben
,
J.
,
Michopoulos
,
J.
,
Iliopoulos
,
A.
, and
Turner
,
C.
,
2015
, “
Inverse Characterization of Composite Materials Via Surrogate Modeling
,”
Composite Struct.
,
132
, pp.
694
708
.
61.
Inc., W. R. Mathematica, Version 11.3
.
Champaign, IL
,
2018
.
62.
Luersen
,
M. A.
, and
Le Riche
,
R.
,
2004
, “
Globalized Nelder–Mead Method for Engineering Optimization
,”
Comput. Struct.
,
82
(
23–26
), pp.
2251
2260
.
63.
Lagarias
,
J. C.
,
Reeds
,
J. A.
,
Wright
,
M. H.
, and
Wright
,
P. E.
,
1998
, “
Convergence Properties of the Nelder-Mmead Simplex Method in Low Dimensions
,”
SIAM J. Optim.
,
9
(
1
), pp.
112
147
.
You do not currently have access to this content.