Abstract

We present a simple and fast algorithm for computing the exact holes in discrete two-dimensional manifolds embedded in a three-dimensional Euclidean space. We deal with the intentionally created “through holes” or “tunnel holes” in the geometry as opposed to missing triangles. The algorithm detects the holes in the geometry directly without any simplified geometry approximation. Discrete Gaussian curvature is used for approximating the local curvature flow in the geometry and for removing outliers from the collection of feature edges. We present an algorithm with varying degrees of flexibility. The algorithm is demonstrated separately for sheets and solid geometries. This article demonstrates the algorithm on triangulated surfaces. However, the algorithm and the underlying data structure are also applicable for surfaces with mixed polygons.

References

References
1.
Danglade
,
F.
,
2015
, “
Estimation of CAD Model Simplification Impact on CFD Analysis Using Machine Learning Techniques
,”
CAD'15
,
London
.
2.
Huang
,
J.
,
Su
,
H.
, and
Guibas
,
L. J.
,
2018
, “
Robust Watertight Manifold Surface Generation Method for Shapenet Models
,”
arXiv preprint
.1802.01698
3.
Doraiswamy
,
H.
, and
Natarajan
,
V.
,
2009
, “
Efficient Algorithms for Computing Reeb Graphs
,”
Comput. Geom.
,
42
(
6
), pp.
606
616
. 10.1016/j.comgeo.2008.12.003
4.
Lozano-Durán
,
A.
, and
Borrell
,
G.
,
2016
, “
Algorithm 964: An Efficient Algorithm to Compute the Genus of Discrete Surfaces and Applications to Turbulent Flows
,”
ACM Trans. Math. Softw.
,
42
(
4
), pp.
34:1
34:19
.
5.
Smereka
,
M.
, and
Duleba
,
I.
,
2008
, “
Circular Object Detection Using a Modified Hough Transform
,”
Int. J. Appl. Math. Comput. Sci.
,
18
(
1
), pp.
85
91
. 10.2478/v10006-008-0008-9
6.
Wang
,
Y.
,
Liu
,
R.
,
Li
,
F.
,
Endo
,
S.
,
Baba
,
T.
, and
Uehara
,
Y.
,
2012
, “
An Effective Hole Detection Method for 3d Models
,”
2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO)
,
Bucharest, Romania
, pp.
1940
1944
.
7.
Joy
,
K. I.
,
Legakis
,
J.
, and
MacCracken
,
R.
,
2003
, “Data Structures for Multiresolution Representation of Unstructured Meshes,”
Hierarchical and Geometrical Methods in Scientific Visualization
,
Farin
,
G.
,
Hamann
,
B.
, and
Hagen
,
H.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
143
170
.
8.
Botsch
,
M.
,
Steinberg
,
S.
,
Bischoff
,
S.
,
Kobbelt
,
L.
, and
Aachen
,
R.
,
2002
,
Openmesh—A Generic and Efficient Polygon Mesh Data Structure
, RWTH Aachen.
9.
The CGAL Project
,
2019
.
CGAL User and Reference Manual
, 4.14 ed.,
CGAL Editorial Board
.
10.
Meyer
,
M.
,
Desbrun
,
M.
,
Schröder
,
P.
, and
Barr
,
A. H.
,
2003
, “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds,”
Visualization and Mathematics III
,
Hege
,
H.-C
, and
Polthier
,
K.
, eds.,
Springer
,
Berlin, Heidelberg
, pp.
35
57
.
11.
Long
,
J.
,
2013
, “
A Hybrid Hole-Filling Algorithm
,”
Master’s thesis
,
Queen’s University
,
Kingston, Ontario, Canada
.
12.
Pérez
,
E.
,
Salamanca
,
S.
,
Merchán
,
P.
, and
Adán
,
A.
,
2016
, “
A Comparison of Hole-Filling Methods in 3d
,”
Int. J. Appl. Math. Comput. Sci.
,
26
(
4
), pp.
885
903
. 10.1515/amcs-2016-0063
13.
Gärtner
,
B.
,
1999
, “
Fast and Robust Smallest Enclosing Balls
,”
Proceedings of the 7th Annual European Symposium on Algorithms
,
Prague, Czech Republic
,
Springer-Verlag
, pp.
325
338
.
You do not currently have access to this content.