Abstract

The mass personalization paradigm requires manufacturing enterprises to adapt to market changes quickly to meet customer demands. It also imposes higher requirements for designing intelligent production lines. Based on the digital twin (DT) technology, a rapid customized design method is proposed for developing new board-type furniture production lines. The DT has the characteristics of interactive virtual-reality mapping and fusion. It could provide design guidance and decision-support services in the design phase, yield the engineering analyzing ability to solve coupled problems, and finally generate the authoritative design scheme of the manufacturing system. A production line design platform is developed based on the DT model, which can parallelize the design process and reduce the design cycle. The parallel control between the physical world and digital space is achieved by establishing the DT network and perceiving the status of the physical equipment. Five key enabling technologies are introduced to provide the theoretical fundamentals for implementing the DT-based manufacturing system design approach. A board-type furniture production line is presented as a case study to verify the effectiveness of the method.

References

1.
Koren
,
Y.
,
2013
, “
The Rapid Responsiveness of RMS
,”
Int. J. Prod. Res.
,
51
(
23–24
), pp.
6817
6827
. 10.1080/00207543.2013.856528
2.
Koren
,
Y.
, and
Shpitalni
,
M.
,
2010
, “
Design of Reconfigurable Manufacturing Systems
,”
J. Manuf. Syst.
,
29
(
4
), pp.
130
141
. 10.1016/j.jmsy.2011.01.001
3.
Liu
,
Q.
,
Zhang
,
H.
,
Leng
,
J.
, and
Chen
,
X.
,
2019
, “
Digital Twin-Driven Rapid Individualised Designing of Automated Flow-Shop Manufacturing System
,”
Int. J. Prod. Res.
,
57
(
12
), pp.
3903
3919
. 10.1080/00207543.2018.1471243
4.
Zhang
,
H.
,
Liu
,
Q.
,
Chen
,
X.
,
Zhang
,
D.
, and
Leng
,
J.
,
2017
, “
A Digital Twin-Based Approach for Designing and Multi-Objective Optimization of Hollow Glass Production Line
,”
IEEE Access
,
5
, pp.
26901
26911
. 10.1109/ACCESS.2017.2766453
5.
Amiri
,
M.
, and
Mohtashami
,
A.
,
2012
, “
Buffer Allocation in Unreliable Production Lines Based on Design of Experiments, Simulation, and Genetic Algorithm
,”
Int. J. Adv. Manuf. Technol.
,
62
(
1–4
), pp.
371
383
. 10.1007/s00170-011-3802-8
6.
Buxey
,
G.
,
Slack
,
N.
, and
Wild
,
R.
,
1973
, “
Production Flow Line System Design—A Review
,”
AIIE Trans.
,
5
(
1
), pp.
37
48
. 10.1080/05695557308974880
7.
Liu
,
Q.
,
Leng
,
J.
,
Yan
,
D.
,
Zhang
,
D.
,
Wei
,
L.
,
Yu
,
A.
,
Zhao
,
R.
,
Zhang
,
H.
, and
Chen
,
X.
,
2020
, “
Digital Twin-Based Designing of the Configuration, Motion, Control, and Optimization Model of a Flow-Type Smart Manufacturing System
,”
J. Manuf. Syst.
,
58
, pp.
52
64
. 10.1016/j.jmsy.2020.04.012
8.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y.
,
2018
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2405
2415
. 10.1109/TII.2018.2873186
9.
Leng
,
J.
,
Liu
,
Q.
,
Ye
,
S.
,
Jing
,
J.
,
Wang
,
Y.
,
Zhang
,
C.
,
Zhang
,
D.
, and
Chen
,
X.
,
2020
, “
Digital Twin-Driven Rapid Reconfiguration of the Automated Manufacturing System via an Open Architecture Model
,”
Rob. Comput. Integr. Manuf.
,
63
, p.
101895
. 10.1016/j.rcim.2019.101895
10.
Chapman
,
C. B.
, and
Pinfold
,
M.
,
2001
, “
The Application of a Knowledge Based Engineering Approach to the Rapid Design and Analysis of an Automotive Structure
,”
Adv. Eng. Software
,
32
(
12
), pp.
903
912
. 10.1016/S0965-9978(01)00041-2
11.
La Rocca
,
G.
,
2012
, “
Knowledge Based Engineering: Between AI and CAD. Review of a Language Based Technology to Support Engineering Design
,”
Adv. Eng. Inform.
,
26
(
2
), pp.
159
179
. 10.1016/j.aei.2012.02.002
12.
Wu
,
R.-R.
, and
Zhang
,
H.-M.
,
1998
, “
Object-Oriented and Fuzzy-Set-Based Approach for Set-Up Planning
,”
Int. J. Adv. Manuf. Technol.
,
14
(
6
), pp.
406
411
. 10.1007/BF01304619
13.
Dahmus
,
J. B.
,
Gonzalez-Zugasti
,
J. P.
, and
Otto
,
K. N.
,
2001
, “
Modular Product Architecture
,”
Des. Stud.
,
22
(
5
), pp.
409
424
. 10.1016/S0142-694X(01)00004-7
14.
Myung
,
S.
, and
Han
,
S.
,
2001
, “
Knowledge-Based Parametric Design of Mechanical Products Based on Configuration Design Method
,”
Expert Syst. Appl.
,
21
(
2
), pp.
99
107
. 10.1016/S0957-4174(01)00030-6
15.
Reynerson
,
C. M.
,
2001
, “
Developing an Efficient Space System Rapid Design Center
,”
Proc. 2001 IEEE Aerospace Conference Proceedings (Cat. No. 01TH8542)
,
Big Sky, MT
,
Mar. 10–17
.
16.
M'Hallah
,
R.
, and
Bouziri
,
A.
,
2016
, “
Heuristics for the Combined Cut Order Planning Two-Dimensional Layout Problem in the Apparel Industry
,”
Int. Trans. Oper. Res.
,
23
(
1–2
), pp.
321
353
. 10.1111/itor.12104
17.
Tang
,
L.
,
Wang
,
G.
, and
Chen
,
Z.-L.
,
2014
, “
Integrated Charge Batching and Casting Width Selection at Baosteel
,”
Oper. Res.
,
62
(
4
), pp.
772
787
. 10.1287/opre.2014.1278
18.
Christofides
,
N.
, and
Hadjiconstantinou
,
E.
,
1995
, “
An Exact Algorithm for Orthogonal 2-D Cutting Problems Using Guillotine Cuts
,”
Eur. J. Oper. Res.
,
83
(
1
), pp.
21
38
. 10.1016/0377-2217(93)E0277-5
19.
Haessler
,
R. W.
, and
Sweeney
,
P. E.
,
1991
, “
Cutting Stock Problems and Solution Procedures
,”
Eur. J. Oper. Res.
,
54
(
2
), pp.
141
150
. 10.1016/0377-2217(91)90293-5
20.
Matsumoto
,
K.
,
Umetani
,
S.
, and
Nagamochi
,
H.
,
2011
, “
On the One-Dimensional Stock Cutting Problem in the Paper Tube Industry
,”
J. Sched.
,
14
(
3
), pp.
281
290
. 10.1007/s10951-010-0164-2
21.
Guide
,
V. D. R.
Jr.
,
Jayaraman
,
V.
, and
Srivastava
,
R.
,
1999
, “
Production Planning and Control for Remanufacturing: A State-of-the-Art Survey
,”
Rob. Comput. Integr. Manuf.
,
15
(
3
), pp.
221
230
. 10.1016/S0736-5845(99)00020-4
22.
Stecke
,
K. E.
,
1983
, “
Formulation and Solution of Nonlinear Integer Production Planning Problems for Flexible Manufacturing Systems
,”
Manage. Sci.
,
29
(
3
), pp.
273
288
. 10.1287/mnsc.29.3.273
23.
Pandey
,
D.
,
Kulkarni
,
M. S.
, and
Vrat
,
P.
,
2011
, “
A Methodology for Joint Optimization for Maintenance Planning, Process Quality and Production Scheduling
,”
Comput. Ind. Eng.
,
61
(
4
), pp.
1098
1106
. 10.1016/j.cie.2011.06.023
24.
Amin-Naseri
,
M.
, and
Afshari
,
A. J.
,
2012
, “
A Hybrid Genetic Algorithm for Integrated Process Planning and Scheduling Problem With Precedence Constraints
,”
Int. J. Adv. Manuf. Technol.
,
59
(
1–4
), pp.
273
287
. 10.1007/s00170-011-3488-y
25.
Alam
,
K. M.
, and
El Saddik
,
A.
,
2017
, “
C2PS: A Digital Twin Architecture Reference Model for the Cloud-Based Cyber-Physical Systems
,”
IEEE Access
,
5
, pp.
2050
2062
. 10.1109/ACCESS.2017.2657006
26.
Lu
,
Y.
,
Liu
,
C.
,
Kevin
,
I.
,
Wang
,
K.
,
Huang
,
H.
, and
Xu
,
X.
,
2020
, “
Digital Twin-Driven Smart Manufacturing: Connotation, Reference Model, Applications and Research Issues
,”
Rob. Comput. Integr. Manuf.
,
61
, p.
101837
. 10.1016/j.rcim.2019.101837
27.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Procedia Manuf.
,
11
, pp.
939
948
. 10.1016/j.promfg.2017.07.198
28.
Qi
,
Q.
, and
Tao
,
F.
,
2018
, “
Digital Twin and Big Data Towards Smart Manufacturing and Industry 4.0: 360 Degree Comparison
,”
IEEE Access
,
6
, pp.
3585
3593
. 10.1109/ACCESS.2018.2793265
29.
Tao
,
F.
,
Cheng
,
J.
,
Qi
,
Q.
,
Zhang
,
M.
,
Zhang
,
H.
, and
Sui
,
F.
,
2018
, “
Digital Twin-Driven Product Design, Manufacturing and Service with Big Data
,”
Int. J. Adv. Manuf. Technol.
,
94
(
9–12
), pp.
3563
3576
. 10.1007/s00170-017-0233-1
30.
Tuegel
,
E. J.
,
Ingraffea
,
A. R.
,
Eason
,
T. G.
, and
Spottswood
,
S. M.
,
2011
, “
Reengineering Aircraft Structural Life Prediction Using a Digital Twin
,”
Int. J. Aerosp. Eng.
,
2011
, pp.
1
14
. 10.1155/2011/154798
31.
Brenner
,
B.
, and
Hummel
,
V.
,
2017
, “
Digital Twin as Enabler for an Innovative Digital Shopfloor Management System in the ESB Logistics Learning Factory at Reutlingen—University
,”
Procedia Manuf.
,
9
, pp.
198
205
. 10.1016/j.promfg.2017.04.039
32.
Schleich
,
B.
,
Anwer
,
N.
,
Mathieu
,
L.
, and
Wartzack
,
S.
,
2017
, “
Shaping the Digital Twin for Design and Production Engineering
,”
CIRP Ann.
,
66
(
1
), pp.
141
144
. 10.1016/j.cirp.2017.04.040
33.
Zhuang
,
C.
,
Liu
,
J.
, and
Xiong
,
H.
,
2018
, “
Digital Twin-Based Smart Production Management and Control Framework for the Complex Product Assembly Shop-Floor
,”
Int. J. Adv. Manuf. Technol.
,
96
(
1–4
), pp.
1149
1163
. 10.1007/s00170-018-1617-6
34.
Tao
,
F.
,
Zhang
,
M.
,
Liu
,
Y.
, and
Nee
,
A.
,
2018
, “
Digital Twin Driven Prognostics and Health Management for Complex Equipment
,”
CIRP Ann.
,
67
(
1
), pp.
169
172
. 10.1016/j.cirp.2018.04.055
35.
Uhlemann
,
T. H.-J.
,
Lehmann
,
C.
, and
Steinhilper
,
R.
,
2017
, “
The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0
,”
Procedia CIRP
,
61
, pp.
335
340
. 10.1016/j.procir.2016.11.152
36.
Tao
,
F.
, and
Zhang
,
M.
,
2017
, “
Digital Twin Shop-Floor: A New Shop-Floor Paradigm Towards Smart Manufacturing
,”
IEEE Access
,
5
, pp.
20418
20427
. 10.1109/ACCESS.2017.2756069
37.
Leng
,
J.
,
Zhang
,
H.
,
Yan
,
D.
,
Liu
,
Q.
,
Chen
,
X.
, and
Zhang
,
D.
,
2019
, “
Digital Twin-Driven Manufacturing Cyber-Physical System for Parallel Controlling of Smart Workshop
,”
J. Ambient Intell. Humaniz. Comput.
,
10
(
3
), pp.
1155
1166
. 10.1007/s12652-018-0881-5
38.
Kritzinger
,
W.
,
Karner
,
M.
,
Traar
,
G.
,
Henjes
,
J.
, and
Sihn
,
W.
,
2018
, “
Digital Twin in Manufacturing: A Categorical Literature Review and Classification
,”
IFAC-PapersOnLine
,
51
(
11
), pp.
1016
1022
. 10.1016/j.ifacol.2018.08.474
39.
Leng
,
J.
,
Yan
,
D.
,
Liu
,
Q.
,
Zhang
,
H.
,
Zhao
,
G.
,
Wei
,
L.
,
Zhang
,
D.
,
Yu
,
A.
, and
Chen
,
X.
,
2019
, “
Digital Twin-Driven Joint Optimisation of Packing and Storage Assignment in Large-Scale Automated High-Rise Warehouse Product-Service System
,”
Int. J. Computer Integr. Manuf.
, pp.
1
18
. 10.1080/0951192X.2019.1667032
40.
DeSmit
,
Z.
,
Elhabashy
,
A. E.
,
Wells
,
L. J.
, and
Camelio
,
J. A.
,
2017
, “
An Approach to Cyber-Physical Vulnerability Assessment for Intelligent Manufacturing Systems
,”
J. Manuf. Syst.
,
43
, pp.
339
351
. 10.1016/j.jmsy.2017.03.004
41.
Feng
,
L.
,
2009
, “
Robustness Evaluation of Flexible Manufacturing System Considering the Static & Dynamic Manufacturing Environment
,”
2009 International Conference on Information Management, Innovation Management and Industrial Engineering
,
Xi'an, China
,
Dec. 26–27
,
IEEE
, pp.
392
395
.
You do not currently have access to this content.