Abstract

The functional parts of a machine tool determine its reliability level to a great extent. The failure prediction of the functional part is helpful to prepare the maintenance scheme in time, in order to ensure a stable manufacturing process and the required production quality. Due to the rise of digital twin (DT), which has the characteristics of virtual reality interaction and real-time mapping, a DT-based real-time prediction method of the remaining useful life (RUL) and preventive maintenance scheme is proposed in this study. In this method, a DT model of the manufacturing workshop is established based on real-time perceptual information obtained by the proposed acquisition method. Subsequently, the real-time RUL of the functional part is predicted by establishing an RUL prediction model based on the nonlinear-drifted Brownian motion, which takes the working conditions and measurement errors into consideration. On this basis, the optimal preventive maintenance scheme can be determined and fed back to the manufacturing workshop, in order to guide the maintenance of relevant parts. Finally, an example case study is presented to illustrate the feasibility and effectiveness of the proposed method.

References

1.
Jazdi
,
N.
,
2014
, “
Cyber Physical Systems in the Context of Industry 4.0.
IEEE International Conference on Automation Quality and Testing Robotic
,
Cluj Napoca, Romania
,
May 22–24
, pp.
1
4
. http://dx.doi.org/10.1109/AQTR.2014.6857843
2.
Mosterman
,
P. J.
, and
Zander
,
J.
,
2016
, “
Industry 4.0 as a Cyber-Physical System Study
,”
Software Syst. Model.
,
15
(
1
), pp.
17
29
. 10.1007/s10270-015-0493-x
3.
Liu
,
S. X.
,
2016
, “
Innovation Design: Made in China 2025
,”
Des. Manage. Rev.
,
27
(
1
), pp.
52
58
. 10.1111/drev.10349
4.
Li
,
N.
,
Lu
,
X.-h.
,
Han
,
P.-z.
, and
Wu
,
W.-y.
,
2012
, “
Study on the Reliability of CNC Machine Tools and Key Function Units
,”
Modular Mach. Tool Autom. Mach. Technol.
,
4
(
11
), pp.
110
113
.
5.
Hu
,
Y.
,
Liu
,
S.
,
Lu
,
H.
, and
Zhang
,
H.
,
2019
, “
Remaining Useful Life Model and Assessment of Mechanical Products: A Brief Review and a Note on the State Space Model Method
,”
Chin. J. Mech. Eng.
,
32
(
1
), p.
15
. 10.1186/s10033-019-0317-y
6.
Zhao
,
Z.
,
Liang
,
B.
,
Wang
,
X.
, and
Lu
,
W.
,
2017
, “
Remaining Useful Life Prediction of Aircraft Engine Based on Degradation Pattern Learning
,”
Reliab. Eng. Syst. Saf.
,
164
, pp.
74
83
. 10.1016/j.ress.2017.02.007
7.
Mohanty
,
S.
,
Chattopadhyay
,
A.
,
Peralta
,
P.
, and
Das
,
S.
,
2011
, “
Bayesian Statistic Based Multivariate Gaussian Process Approach for Offline/Online Fatigue Crack Growth Prediction
,”
Exp. Mech.
,
51
(
6
), pp.
833
843
. 10.1007/s11340-010-9394-7
8.
Zhang
,
J.-L.
,
Shang
,
D.-G.
,
Sun
,
Y.-J.
, and
Wang
,
X.-W.
,
2018
, “
Multiaxial High-Cycle Fatigue Life Prediction Model Based on the Critical Plane Approach Considering Mean Stress Effects
,”
Int. J. Damage Mech.
,
27
(
1
), pp.
32
46
. 10.1177/1056789516659331
9.
Bhargava
,
C.
,
Sharma
,
P. K.
,
Sanjeevikumar
,
M.
, and
Padmanaban
,
S.
,
2020
, “
Review of Health Prognostics and Condition Monitoring of Electronic Components
,”
IEEE Access
,
8
, pp.
75163
75183
. 10.1109/ACCESS.2020.2989410
10.
Cui
,
J.
,
Zhao
,
Y.
,
Dong
,
S.
, and
Zhang
,
H.
,
2011
, “
Life Prognostics for Aero-generator Based on Genetic Algorithm and ARMA Model
,”
Acta Aeronaut. Astronaut. Sin.
,
32
(
8
), pp.
1506
1511
.
11.
An
,
D.
,
Kim
,
N. H.
, and
Choi
,
J.-H.
,
2015
, “
Practical Options for Selecting Data-Driven or Physics-Based Prognostics Algorithms With Reviews
,”
Reliab. Eng. Syst. Saf.
,
133
, pp.
223
236
. 10.1016/j.ress.2014.09.014
12.
Liu
,
Q.
,
Dong
,
M.
,
Lv
,
W.
,
Geng
,
X.
, and
Li
,
Y.
,
2015
, “
A Novel Method Using Adaptive Hidden Semi-Markov Model for Multi-sensor Monitoring Equipment Health Prognosis
,”
Mech. Syst. Sig. Process.
,
64–65
, pp.
217
232
. 10.1016/j.ymssp.2015.03.029
13.
Djeziri
,
M. A.
,
Benmoussa
,
S.
, and
Sanchez
,
R.
,
2017
, “
Hybrid Method for Remaining Useful Life Prediction in Wind Turbine Systems
,”
Renewable Energy
,
116
, pp.
173
187
. 10.1016/j.renene.2017.05.020
14.
Nguyen
,
T. B. L.
,
Djeziri
,
M.
,
Ananou
,
B.
,
Ouladsine
,
M.
, and
Pinaton
,
J.
,
2016
, “
Fault Prognosis for Batch Production Based on Percentile Measure and Gamma Process: Application to Semiconductor Manufacturing
,”
J. Process Control
,
48
, pp.
72
80
. 10.1016/j.jprocont.2016.10.003
15.
Ling
,
M. H.
,
Ng
,
H. K. T.
, and
Tsui
,
K. L.
, “
Bayesian and Likelihood Inferences on Remaining Useful Life in Two-Phase Degradation Models Under Gamma Process
,”
Reliab. Eng. Syst. Saf.
,
184
, pp.
77
85
. 10.1016/j.ress.2017.11.017
16.
He
,
X.
, and
Fu
,
J. Y.
,
2017
, “
Experimental Evidence That Electrical Fatigue Failure Obeys A Generalized Coffin-Manson Law
,”
Phys. Lett.
,
381
(
18
), pp.
1598
1602
. 10.1016/j.physleta.2017.03.007
17.
Feng
,
J.
,
Kvam
,
P.
, and
Tang
,
Y.
,
2016
, “
Remaining Useful Lifetime Prediction Based on the Damage-Marker Bivariate Degradation Model: A Case Study on Lithium-ion Batteries Used in Electric Vehicles
,”
Eng. Failure Anal.
,
70
, pp.
323
342
. 10.1016/j.engfailanal.2016.04.014
18.
Djeziri
,
M. A.
,
Benmoussa
,
S.
, and
Benbouzid
,
M. E. H.
,
2019
, “
Data-Driven Approach Augmented in Simulation for Robust Fault Prognosis
,”
Eng. Appl. Artif. Intell.
,
86
, pp.
154
164
. 10.1016/j.engappai.2019.09.002
19.
Lei
,
Y.
,
Li
,
N.
,
Guo
,
L.
,
Li
,
N.
,
Yan
,
T.
, and
Lin
,
J.
,
2018
, “
Machinery Health Prognostics: A Systematic Review From Data Acquisition to RUL Prediction
,”
Mech. Syst. Sig. Process.
,
104
, pp.
799
834
. 10.1016/j.ymssp.2017.11.016
20.
Zhang
,
Z.
,
Si
,
X.
,
Hu
,
C.
, and
Lei
,
Y.
,
2018
, “
Degradation Data Analysis and Remaining Useful Life Estimation: A Review on Wiener-Process-Based Methods
,”
Eur. J. Oper. Res.
,
271
(
3
), pp.
775
796
. 10.1016/j.ejor.2018.02.033
21.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2011
, “
Remaining Useful Life Estimation-A Review on the Statistical Data Driven Approaches
,”
Eur. J. Oper. Res.
,
213
(
1
), pp.
1
14
. 10.1016/j.ejor.2010.11.018
22.
Djeziri
,
M. A.
,
Benmoussa
,
S.
,
Sayed Mouchaweh
,
M.
, and
Lughofer
,
E.
,
2020
, “
Fault Diagnosis and Prognosis Based on Physical Knowledge and Reliability Data: Application to MOS Field-Effect Transistor
,”
Microelectron. Reliab.
,
110
, p.
113682
. 10.1016/j.microrel.2020.113682
23.
Hu
,
C.
,
Pei
,
H.
,
Wang
,
Z.
,
Si
,
X.
, and
Zhang
,
Z.
,
2018
, “
A New Remaining Useful Life Estimation Method for Equipment Subjected to Intervention of Imperfect Maintenance Activities
,”
Chin. J. Aeronaut.
,
31
(
3
), pp.
514
528
. 10.1016/j.cja.2018.01.009
24.
Huang
,
Z.
,
Xu
,
Z.
,
Wang
,
W.
, and
Sun
,
Y.
,
2015
, “
Remaining Useful Life Prediction for a Nonlinear Heterogeneous Wiener Process Model With an Adaptive Drift
,”
IEEE Trans. Reliab.
,
64
(
2
), pp.
687
700
. 10.1109/TR.2015.2403433
25.
Wang
,
D.
,
Zhao
,
Y.
,
Yang
,
F.
, and
Tsui
,
K.-L.
,
2017
, “
Nonlinear-Drifted Brownian Motion With Multiple Hidden States for Remaining Useful Life Prediction of Rechargeable Batteries
,”
Mech. Syst. Sig. Process.
,
93
, pp.
531
544
. 10.1016/j.ymssp.2017.02.027
26.
Huang
,
Z.
,
Xu
,
Z.
,
Ke
,
X.
,
Wang
,
W.
, and
Sun
,
Y.
,
2017
, “
Remaining Useful Life Prediction for an Adaptive Skew-Wiener Process Model
,”
Mech. Syst. Sig. Process.
,
87
(
1
), pp.
294
306
. 10.1016/j.ymssp.2016.10.027
27.
Wang
,
X.
,
Balakrishnan
,
N.
, and
Guo
,
B.
,
2014
, “
Residual Life Estimation Based on a Generalized Wiener Degradation Process
,”
Reliab. Eng. Syst. Saf.
,
124
(
1
), pp.
13
23
. 10.1016/j.ress.2013.11.011
28.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
,
Chen
,
M.-Y.
, and
Zhou
,
D.-H.
,
2013
, “
A Wiener-Process-Based Degradation Model With a Recursive Filter Algorithm for Remaining Useful Life Estimation
,”
Mech. Syst. Sig. Proc.
,
35
(
1–2
), pp.
219
237
. 10.1016/j.ymssp.2012.08.016
29.
Liu
,
X.
,
Liu
,
L.
,
Liu
,
D.
,
Wang
,
L.
,
Guo
,
Q.
, and
Peng
,
X.
,
2020
, “
A Hybrid Method of Remaining Useful Life Prediction for Aircraft Auxiliary Power Unit
,”
IEEE Sens. J.
,
20
(
14
), pp.
7848
7858
. 10.1109/JSEN.2020.2979797
30.
Li
,
H.
,
Yang
,
Z.
,
Xu
,
B.
,
Chen
,
C.
,
Kan
,
Y.
, and
Liu
,
G.
,
2016
, “
Reliability Evaluation of NC Machine Tools Considering Working Conditions
,”
Math. Prob. Eng.
,
2016
, pp.
1
11
. 10.1155/2016/9842607
31.
He
,
B.
, and
Bai
,
K.-J.
,
2020
, “
Digital Twin-Based Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
10.1007/s40436-020-00302-5
32.
Fang
,
Y.
,
Peng
,
C.
,
Lou
,
P.
,
Zhou
,
Z.
,
Hu
,
J.
, and
Yan
,
J.
,
2019
, “
Digital-Twin-Based Job Shop Scheduling Toward Smart Manufacturing
,”
IEEE Trans. Ind. Inform.
,
15
(
12
), pp.
6425
6435
. 10.1109/TII.2019.2938572
33.
Kong
,
T.
,
Hu
,
T.
,
Zhou
,
T.
, and
Ye
,
Y.
,
2020
, “
Data Construction Method for the Applications of Workshop Digital Twin System
,”
J. Manuf. Syst.
10.1016/j.jmsy.2020.02.003
34.
Negri
,
E.
,
Fumagalli
,
L.
, and
Macchi
,
M.
,
2017
, “
A Review of the Roles of Digital Twin in CPS-Based Production Systems
,”
Procedia Manuf.
,
11
, pp.
939
948
. 10.1016/j.promfg.2017.07.198
35.
Tao
,
F.
,
Zhang
,
H.
,
Liu
,
A.
, and
Nee
,
A. Y. C.
,
2019
, “
Digital Twin in Industry: State-of-the-Art
,”
IEEE Trans. Ind. Inform.
,
15
(
4
), pp.
2405
2415
. 10.1109/TII.2018.2873186
36.
Wang
,
Z.
,
Chen
,
Y.
,
Cai
,
Z.
,
Xiang
,
H.
, and
Luo
,
C.
,
2019
, “
Real-Time Prediction of Remaining Useful Lifetime for Equipment With Random Failure Threshold
,”
J. Syst. Eng. Electron.
,
41
(
5
), pp.
1162
1168
.
37.
Escobar
,
L.
,
Meeker
,
W.
,
Kugler
,
D. L.
, and
Kramer
,
L. L.
,
2003
, “
Accelerated Destructive Degradation Tests: Data, Models, and Analysis
,”
Math. Stat. Methods Reliab.
, pp.
319
337
. 10.1142/9789812795250_0021
38.
Li
,
X.
,
Hu
,
Y.
,
Zhou
,
J.
,
Li
,
X.
, and
Kang
,
R.
,
2018
, “
Bayesian Step Stress Accelerated Degradation Testing Design: A Multi-objective Pareto-Optimal Approach
,”
Reliab. Eng. Syst. Saf.
,
171
, pp.
9
17
. 10.1016/j.ress.2017.11.005
39.
Nelson
,
W.
,
1990
, “
Accelerated Testing: Statistical Models, Test Plans, and Data Analysis
,”
Technometrics
,
33
(
2
), pp.
236
238
.
40.
Ye
,
Z.-S.
, and
Xie
,
M.
,
2015
, “
Stochastic Modelling and Analysis of Degradation for Highly Reliable Products
,”
Appl. Stochastic Models Bus. Ind.
,
31
(
1
), pp.
16
32
. 10.1002/asmb.2063
41.
Srivastava
,
P. W.
, and
Manisha
,
M.
,
2019
, “
Triangular Cyclic Accelerated Degradation Zero-Failure Test Plan
,”
Int. J. Qual. Reliab. Manage.
,
36
(
2
), pp.
358
377
. 10.1108/IJQRM-03-2017-0040
42.
Chhikara
,
R. S.
, and
Leroy Folks
,
J.
,
1989
,
The Inverse Gaussian Distribution
,
Marcel Dekker
,
New York
.
43.
Si
,
X.-S.
,
Wang
,
W.
,
Hu
,
C.-H.
, and
Zhou
,
D.-H.
,
2014
, “
Estimating Remaining Useful Life With Three-Source Variability in Degradation Modeling
,”
IEEE Trans. Reliab.
,
63
(
1
), pp.
167
190
. 10.1109/TR.2014.2299151
44.
Pan
,
D.
,
Wei
,
Y.
,
Fang
,
H.
, and
Yang
,
W.
,
2018
, “
A Reliability Estimation Approach via Wiener Degradation Model With Measurement Errors
,”
Appl. Math. Comput.
,
320
, pp.
131
141
. 10.1016/j.amc.2017.09.020
You do not currently have access to this content.