Abstract

Through experience, designers develop guiding principles, or heuristics, to aid decision-making in familiar design domains. Generalized versions of common design heuristics have been identified across multiple domains and applied by novices to design problems. Previous work leveraged a sample of these common heuristics to assist in an agent-based design process, which typically lacks heuristics. These predefined heuristics were translated into sequences of specifically applied design changes that followed the theme of the heuristic. To overcome the upfront burden, need for human interpretation, and lack of generality of this manual process, this paper presents a methodology that induces frequent heuristic sequences from an existing timeseries design change dataset. Individual induced sequences are then algorithmically grouped based on similarity to form groups that each represent a shared general heuristic. The heuristic induction methodology is applied to data from two human design studies in different design domains. The first dataset, collected from a truss design task, finds a highly similar set of general heuristics used by human designers to that which was hand-selected for the previous computational agent study. The second dataset, collected from a cooling system design problem, demonstrates further applicability and generality of the heuristic induction process. Through this heuristic induction technique, designers working in a specified domain can learn from others’ prior problem-solving strategies and use these strategies in their own future design problems.

References

References
1.
Nisbett
,
R. E.
, and
Ross
,
L.
,
1980
,
Human Inference: Strategies and Shortcomings of Social Judgment
,
Prentice-Hall, Englewood Cliffs
,
NJ
.
2.
Ahmed
,
S.
,
Wallace
,
K. M.
, and
Blessing
,
L. T.
,
2003
, “
Understanding the Differences Between How Novice and Experienced Designers Approach Design Tasks
,”
Res. Eng. Des.
,
14
(
1
), pp.
1
11
. 10.1007/s00163-002-0023-z
3.
Cross
,
N.
,
2004
, “
Expertise in Design: An Overview
,”
Des. Stud.
,
25
(
5
), pp.
427
441
. 10.1016/j.destud.2004.06.002
4.
Daly
,
S.
, and
Christian
,
J. L.
,
2012
, “
Assessing Design Heuristics for Idea Generation in an Introductory Engineering Course
,”
Int. J. Eng. Educ.
,
28
(
2
), pp.
1
11
.
5.
Kramer
,
J.
,
Daly
,
S. R.
,
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2014
, “
A Case-Study Analysis of Design Heuristics in an Upper-Level Cross-Disciplinary Design Course
,”
2014 ASEE Annual Conference & Exposition
,
Indianapolis, IN
,
June 15–18
, pp.
24.23.1
24.23.17
.
6.
Yilmaz
,
S.
, and
Seifert
,
C. M.
,
2011
, “
Creativity Through Design Heuristics: A Case Study of Expert Product Design
,”
Des. Stud.
,
32
(
4
), pp.
384
415
. 10.1016/j.destud.2011.01.003
7.
Yilmaz
,
S.
,
Seifert
,
C.
,
Daly
,
S. R.
, and
Gonzalez
,
R.
,
2016
, “
Design Heuristics in Innovative Products
,”
ASME J. Mech. Des.
,
138
(
7
), p.
071102
. 10.1115/1.4032219
8.
Blösch-Paidosh
,
A.
, and
Shea
,
K.
,
2019
, “
Design Heuristics for Additive Manufacturing Validated Through a User Study 1
,”
ASME J. Mech. Des.
,
141
(
4
), p.
041101
. 10.1115/1.4041051
9.
Schmidt
,
L. C.
, and
Cagan
,
J.
,
1997
, “
GGREADA: A Graph Grammar-Based Machine Design Algorithm
,”
Res. Eng. Des.
,
9
(
4
), pp.
195
213
. 10.1007/BF01589682
10.
Chakrabarti
,
A.
,
Shea
,
K.
,
Stone
,
R.
,
Cagan
,
J.
,
Campbell
,
M.
,
Hernandez
,
N. V.
, and
Wood
,
K. L.
,
2011
, “
Computer-Based Design Synthesis Research: An Overview
,”
ASME J. Comput. Inf. Sci. Eng.
,
11
(
2
), p.
021003
. 10.1115/1.3593409
11.
Königseder
,
C.
, and
Shea
,
K.
,
2014
, “
Systematic Rule Analysis of Generative Design Grammars
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
28
(
03
), pp.
227
238
. 10.1017/S0890060414000195
12.
Stöckli
,
F.
, and
Shea
,
K.
,
2017
, “
Automated Synthesis of Passive Dynamic Brachiating Robots Using a Simulation-Driven Graph Grammar Method
,”
ASME J. Mech. Des.
,
139
(
9
), p.
092301
. 10.1115/1.4037245
13.
Knight
,
T.
,
1998
, “Designing a Shape Grammar: Problems in Predictability,”
Artificial Intelligence in Design ’98
, 1,
J. S.
Gero
, and
F.
Sudweeks
, eds.,
Springer
,
Dordrecht
, pp.
499
516
.
14.
Puentes
,
L.
,
Cagan
,
J.
, and
Mccomb
,
C.
,
2020
, “
Heuristic-Guided Solution Search Through a Two-Tiered Design Grammar
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011008
. 10.1115/1.4044694
15.
Whiting
,
M. E.
,
Cagan
,
J.
, and
LeDuc
,
P.
,
2018
, “
Efficient Probabilistic Grammar Induction for Design
,”
Artif. Intell. Eng. Des. Anal. Manuf.
,
32
(
02
), pp.
177
188
. 10.1017/S0890060417000464
16.
Eichhoff
,
J. R.
,
Baumann
,
F. W.
, and
Roller
,
D.
,
2017
, “
In Search of Missing Design Rules : Using Rule Induction to Extend Existing Rule Bases
,”
J. Adv. Technol. Eng. Stud.
,
3
(
4
), pp.
150
169
. 10.20474/jater-3.4.5
17.
Studer
,
J. A.
,
Yilmaz
,
S.
,
Daly
,
S.
, and
Seifert
,
C.
,
2016
, “
Cognitive Heuristics in Defining Engineering Design Problems
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, ASME,
Charotte, NC
, pp.
1
11
.
18.
Sangelkar
,
S.
, and
McAdams
,
D. A.
,
2013
, “
Mining Functional Model Graphs to Find Product Design Heuristics With Inclusive Design Illustration
,”
ASME J. Comput. Inf. Sci. Eng.
,
13
(
4
), p.
041008
. 10.1115/1.4025469
19.
Fukunaga
,
K.
, and
Hostetler
,
L. D.
,
1975
, “
The Estimation of the Gradient of a Density Function, with Applications in Pattern Recognition
,”
IEEE Trans. Inf. Theory
,
21
(
1
), pp.
32
40
. 10.1109/TIT.1975.1055330
20.
Pedregosa
,
F.
,
Varoquaux
,
G.
,
Gramfort
,
A.
,
Michel
,
V.
,
Thirion
,
B.
,
Grisel
,
O.
,
Blondel
,
M.
,
Prettenhofer
,
P.
,
Weiss
,
R.
,
Dubourg
,
V.
,
Vanderplas
,
J.
,
Passos
,
A.
,
Cournapeau
,
D.
,
Brucher
,
M.
,
Perrot
,
M.
, and
Duchesnay
,
E.
,
2011
, “
Scikit-Learn: Machine Learning in Python
,”
J. Mach. Learn. Res.
,
12
(
85
), pp.
2825
2830
. 10.3389/fninf.2014.00014
21.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2015
, “
Rolling With the Punches: An Examination of Team Performance in a Design Task Subject to Drastic Changes
,”
Des. Stud.
,
36
(
C
), pp.
99
121
. 10.1016/j.destud.2014.10.001
22.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Optimizing Design Teams Based on Problem Properties: Computational Team Simulations and an Applied Empirical Test
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041101
. 10.1115/1.4035793
23.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2018
, “
Data on the Design of Truss Structures by Teams of Engineering Students
,”
Data Br.
,
18
, pp.
160
163
. 10.1016/j.dib.2018.02.078
24.
Mccomb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Data on the Configuration Design of Internet-Connected Home Cooling Systems by Engineering Students
,”
Data Br.
,
14
, pp.
773
776
. 10.1016/j.dib.2017.08.050
25.
Puentes
,
L.
,
Raina
,
A.
,
Cagan
,
J.
, and
McComb
,
C.
,
2020
, “
Modeling A Strategic Human Engineering Design Process: Human-Inspired Heuristic Guidance Through Learned Visual Design Agents
,”
International Design Conference Design 2020
,
Dubrovnik, Croatia
, pp.
1
10
.
26.
Maaten
,
L.
,
Van Der
, and
Hinton
,
G.
,
2008
, “
Visualizing Data Using T-SNE
,”
J. Mach. Learn. Res.
,
9
, pp.
2579
2605
.
27.
McComb
,
C.
,
Cagan
,
J.
, and
Kotovsky
,
K.
,
2017
, “
Capturing Human Sequence-Learning Abilities in Configuration Design Tasks Through Markov Chains
,”
ASME J. Mech. Des.
,
139
(
9
), p.
091101
. 10.1115/1.4037185
28.
Strook
,
D. W.
,
2005
,
An Introduction to Markov Processes
,
Springer Science and Business Media
,
Berlin
.
You do not currently have access to this content.