Abstract

Parallel robots are multiple degrees of freedom (DOFs) systems that are typically used in applications characterized by enhanced accuracy, rigidity, and large force requirements within a compact workspace. In the present research, an intrinsically compliant parallel robot with 3-DOFs, actuated using four pneumatic muscle actuators (PMA), is conceptualized, developed, and analyzed. Despite many benefits, parallel robots also offer certain challenges that arise from the highly coupled and nonlinear motion of their actuators. The small workspace of parallel robots has many singularities and solving a closed-form forward kinematics (FK) for its end-effector motion is complicated. The PMAs can provide intrinsically compliant robotic motions, however, since they are flexible, their unilateral actuation also poses constraints on the achievable DOFs. The present research focuses on analyzing kinematics and dynamics of the developed parallel robot incorporating the stiffness together with force closure analyses besides suggesting design improvements as a consequence of the singularity analysis. Design synthesis and multi-criteria optimization have been performed to obtain a robot design which may provide higher accuracies (near unity condition number), quick response to external wrench (stiffness and rigidity), and reduced actuator force requirements. SPEA2 (Improved Strength Pareto Evolutionary Algorithm) has been implemented to carry out the simultaneous optimization of design objectives and provide Pareto optimal design solutions.

References

1.
Puglisi
,
L. J.
,
Saltaren
,
R. J.
,
Rey Portolés
,
G.
,
Moreno
,
H.
,
Cárdenas
,
P. F.
, and
Garcia
,
C.
,
2013
, “
Design and Kinematic Analysis of 3PSS-1S Wrist for Needle Insertion Guidance
,”
Robotics Auton. Syst.
,
61
(
5
), pp.
417
427
. 10.1016/j.robot.2013.02.001
2.
Serracn
,
J. R.
,
Puglisi
,
L. J.
,
Saltaren
,
R.
,
Ejarque
,
G.
,
Sabater-Navarro
,
J. M.
, and
Aracil
,
R.
,
2012
, “
Kinematic Analysis of a Novel 2-d.o.f. Orientation Device
,”
Rob. Auton. Syst.
,
60
(
6
), pp.
852
861
. 10.1016/j.robot.2012.01.010
3.
Lismonde
,
A.
,
Sonneville
,
V.
, and
Brüls
,
O.
,
2019
, “
A Geometric Optimization Method for the Trajectory Planning of Flexible Manipulators
,”
Multibody Syst. Dyn.
,
47
, pp.
347
362
.
4.
Stewart
,
D.
,
1966
, “
A Platform with Six Degrees of Freedom: A new Form of Mechanical Linkage Which Enables a Platform to Move Simultaneously in All Six Degrees of Freedom Developed by Elliott-Automation
,”
Aircr. Eng. Aerosp. Technol.
,
38
(
4
), pp.
30
35
. 10.1108/eb034141
5.
Sun
,
T.
,
Lian
,
B.
,
Song
,
Y.
, and
Feng
,
L.
,
2019
, “
Elastodynamic Optimization of a 5-DoF Parallel Kinematic Machine Considering Parameter Uncertainty
,”
IEEE/ASME Trans. Mech.
,
24
(
1
), pp.
315
325
. 10.1109/TMECH.2019.2891355
6.
Mostashiri
,
N.
,
Dhupia
,
J. S.
,
Verl
,
A. W.
, and
Xu
,
W.
,
2018
, “
A Review of Research Aspects of Redundantly Actuated Parallel Robotsw for Enabling Further Applications
,”
IEEE/ASME Trans. Mech.
,
23
(
3
), pp.
1259
1269
. 10.1109/TMECH.2018.2792450
7.
Shin
,
H.
,
Lee
,
S.
,
Jeong
,
J. I.
, and
Kim
,
J.
,
2013
, “
Antagonistic Stiffness Optimization of Redundantly Actuated Parallel Manipulators in a Predefined Workspace
,”
IEEE/ASME Trans. Mech.
,
18
(
3
), pp.
1161
1169
. 10.1109/TMECH.2012.2198224
8.
Palpacelli
,
M. C.
,
Carbonari
,
L.
,
Palmieri
,
G.
, and
Callegari
,
M.
,
2015
, “
Analysis and Design of a Reconfigurable 3-DoF Parallel Manipulator for Multimodal Tasks
,”
IEEE/ASME Trans. Mech.
,
20
(
4
), pp.
1975
1985
. 10.1109/TMECH.2014.2365616
9.
Qi
,
Y.
,
Sun
,
T.
, and
Song
,
Y.
,
2018
, “
Multi-Objective Optimization of Parallel Tracking Mechanism Considering Parameter Uncertainty
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041006
. 10.1115/1.4039771
10.
Qi
,
Y.
,
Sun
,
T.
,
Song
,
Y.
, and
Jin
,
Y.
,
2014
, “
Topology Synthesis of Three-Legged Spherical Parallel Manipulators Employing Lie Group Theory
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
, Vol.
229
, pp.
1873
1886
.
11.
Sun
,
T.
, and
Lian
,
B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
. 10.1016/j.mechmachtheory.2017.09.014
12.
Sun
,
T.
,
Song
,
Y.
,
Dong
,
G.
,
Lian
,
B.
, and
Liu
,
J.
,
2012
, “
Optimal Design of a Parallel Mechanism With Three Rotational Degrees of Freedom
,”
Rob. Comput.-Integr. Manuf.
,
28
(
4
), pp.
500
508
. 10.1016/j.rcim.2012.02.002
13.
Sun
,
T.
,
Zhai
,
Y.
,
Song
,
Y.
, and
Zhang
,
J.
,
2016
, “
Kinematic Calibration of a 3-DoF Rotational Parallel Manipulator Using Laser Tracker
,”
Rob. Comput.-Integr. Manuf.
,
41
, pp.
78
91
. 10.1016/j.rcim.2016.02.008
14.
Bolboli
,
J.
,
Khosravi
,
M. A.
, and
Abdollahi
,
F.
,
2019
, “
Stiffness Feasible Workspace of Cable-Driven Parallel Robots With Application to Optimal Design of a Planar Cable Robot
,”
Rob. Auton. Syst.
,
114
, pp.
19
28
. 10.1016/j.robot.2019.01.012
15.
Isaksson
,
M.
,
Gosselin
,
C.
, and
Marlow
,
K.
,
2017
, “
Singularity Analysis of a Class of Kinematically Redundant Parallel Schönflies Motion Generators
,”
Mech. Mach. Theory
,
112
, pp.
172
191
. 10.1016/j.mechmachtheory.2017.01.012
16.
Merlet
,
J. P.
,
2010
,
Parallel Robots
,
Springer Publishing Company, Incorporated
,
Netherlands
.
17.
Vallery
,
H.
,
Veneman
,
J.
,
van Asseldonk
,
E.
,
Ekkelenkamp
,
R.
,
Buss
,
M.
, and
van Der Kooij
,
H.
,
2008
, “
Compliant Actuation of Rehabilitation Robots
,”
IEEE Rob. Autom. Mag.
,
15
(
3
), pp.
60
69
. 10.1109/MRA.2008.927689
18.
Bharadwaj
,
K.
,
Sugar
,
T. G.
,
Koeneman
,
J. B.
, and
Koeneman
,
E. J.
,
2005
, “
Design of a Robotic Gait Trainer Using Spring Over Muscle Actuators for Ankle Stroke Rehabilitation
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
1009
1013
. 10.1115/1.2049333
19.
Veneman
,
J. F.
,
Ekkelenkamp
,
R.
,
Kruidhof
,
R.
,
Van Der Helm
,
F. C. T.
, and
Van Der Kooij
,
H.
,
2006
, “
A Series Elastic- and Bowden-Cable-Based Actuation System for use as Torque Actuator in Exoskeleton-Type Robots
,”
Int. J. Rob. Res.
,
25
(
3
), pp.
261
281
. 10.1177/0278364906063829
20.
Hosoda
,
K.
,
Takuma
,
T.
,
Nakamoto
,
A.
, and
Hayashi
,
S.
,
2008
, “
Biped Robot Design Powered by Antagonistic Pneumatic Actuators for Multi-Modal Locomotion
,”
Rob. Auton. Syst.
,
56
(
1
), pp.
46
53
. 10.1016/j.robot.2007.09.010
21.
Yu
,
H.
,
Huang
,
S.
,
Chen
,
G.
, and
Thakor
,
N.
,
2013
, “
Control Design of a Novel Compliant Actuator for Rehabilitation Robots
,”
Mechatronics
,
23
(
8
), pp.
1072
1083
. 10.1016/j.mechatronics.2013.08.004
22.
Kozuka
,
H.
,
Arata
,
J.
,
Okuda
,
K.
,
Onaga
,
A.
,
Ohno
,
M.
,
Sano
,
A.
, and
Fujimoto
,
H.
,
2013
, “
A Compliant-Parallel Mechanism With Bio-Inspired Compliant Joints for High Precision Assembly Robot
,”
Procedia CIRP
,
5
, pp.
175
178
. 10.1016/j.procir.2013.01.035
23.
Yun
,
Y.
, and
Li
,
Y.
,
2011
, “
Optimal Design of a 3-PUPU Parallel Robot With Compliant Hinges for Micromanipulation in a Cubic Workspace
,”
Rob. Comput.-Integr. Manuf.
,
27
(
6
), pp.
977
985
. 10.1016/j.rcim.2011.05.001
24.
Rubbert
,
L.
,
Caro
,
S.
,
Gangloff
,
J.
, and
Renaud
,
P.
,
2014
, “
Using Singularities of Parallel Manipulators to Enhance the Rigid-Body Replacement Design Method of Compliant Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051010
. 10.1115/1.4026949
25.
Correa
,
J. C.
, and
Crane
,
C.
,
2013
, “
Kinematic Analysis of a Three-Degree of Freedom Compliant Platform
,”
ASME J. Mech. Des.
,
135
(
5
), p.
051009
. 10.1115/1.4024085
26.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1216
1227
. 10.1177/0278364909104221
27.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2013
, “
Control Strategies for Patient-Assisted Training Using the Ankle Rehabilitation Robot (ARBOT)
,”
IEEE/ASME Trans. Mech.
,
18
(
6
), pp.
1799
1808
. 10.1109/TMECH.2012.2214228
28.
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2003
, “
Development and Control of a ‘Soft-Actuated’ Exoskeleton for use in Physiotherapy and Training
,”
Auton. Rob.
,
15
(
1
), pp.
21
33
. 10.1023/A:1024484615192
29.
Beyl
,
P.
,
Knaepen
,
K.
,
Duerinck
,
S.
,
Van Damme
,
M.
,
Vanderborght
,
B.
,
Meeusen
,
R.
, and
Lefeber
,
D.
,
2011
, “
Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait
,”
Adv. Rob.
,
25
(
5
), pp.
513
535
. 10.1163/016918611X558225
30.
Sugar
,
T. G.
,
He
,
J.
,
Koeneman
,
E. J.
,
Koeneman
,
J. B.
,
Herman
,
R.
,
Huang
,
H.
,
Schultz
,
R. S.
,
Herring
,
D. E.
,
Wanberg
,
J.
,
Balasubramanian
,
S.
,
Swenson
,
P.
, and
Ward
,
J. A.
,
2007
, “
Design and Control of RUPERT: A Device for Robotic Upper Extremity Repetitive Therapy
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
15
(
3
), pp.
336
346
. 10.1109/TNSRE.2007.903903
31.
Sawicki
,
G. S.
, and
Ferris
,
D. P.
,
2009
, “
A Pneumatically Powered Knee-Ankle-Foot Orthosis (KAFO) with Myoelectric Activation and Inhibition
,”
J. Neuro Eng. Rehabil.
,
6
(
1
), pp.
1
16
. 10.1186/1743-0003-6-23
32.
Liu
,
K.
,
Xu
,
J.
,
Ge
,
Z.
,
Wang
,
Y.
,
Zhao
,
D.
, and
Lu
,
Y.
,
2017
, “
Robust Control of 3-DOF Parallel Robot Driven by PMAs Based on Nominal Stiffness Model
,”
Adv. Rob.
,
31
(
10
), pp.
531
543
. 10.1080/01691864.2017.1284022
33.
Chou
,
C. P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
. 10.1109/70.481753
34.
Kong
,
K.
,
Bae
,
J.
, and
Tomizuka
,
M.
,
2009
, “
Control of Rotary Series Elastic Actuator for Ideal Force-Mode Actuation in Human-Robot Interaction Applications
,”
IEEE/ASME Trans. Mech.
,
14
(
1
), pp.
105
118
. 10.1109/TMECH.2008.2004561
35.
Choi
,
T. Y.
, and
Lee
,
J. J.
,
2010
, “
Control of Manipulator Using Pneumatic Muscles for Enhanced Safety
,”
IEEE Trans. Ind. Electron.
,
57
(
8
), pp.
2815
2825
. 10.1109/TIE.2009.2036632
36.
Choi
,
T. Y.
,
Choi
,
B. S.
, and
Seo
,
K. H.
,
2011
, “
Position and Compliance Control of a Pneumatic Muscle Actuated Manipulator for Enhanced Safety
,”
IEEE Trans. Control Syst. Technol.
,
19
(
4
), pp.
832
842
. 10.1109/TCST.2010.2052362
37.
Van Der Linde
,
R. Q.
,
1999
, “
Design, Analysis, and Control of a Low Power Joint for Walking Robots, by Phasic Activation of McKibben Muscles
,”
IEEE Trans. Rob. Autom.
,
15
(
4
), pp.
599
604
. 10.1109/70.781963
38.
Zhu
,
X.
,
Tao
,
G.
,
Yao
,
B.
, and
Cao
,
J.
,
2008
, “
Adaptive Robust Posture Control of Parallel Manipulator Driven by Pneumatic Muscles with Redundancy
,”
IEEE/ASME Trans. Mech.
,
13
(
4
), pp.
441
450
. 10.1109/TMECH.2008.2000825
39.
Zhu
,
X.
,
Tao
,
G.
,
Yao
,
B.
, and
Cao
,
J.
,
2008
, “
Adaptive Robust Posture Control of a Parallel Manipulator Driven by Pneumatic Muscles
,”
Automatica
,
44
(
9
), pp.
2248
2257
. 10.1016/j.automatica.2008.01.015
40.
Zhu
,
X.
,
Tao
,
G.
,
Yao
,
B.
, and
Cao
,
J.
,
2009
, “
Integrated Direct/Indirect Adaptive Robust Posture Trajectory Tracking Control of a Parallel Manipulator Driven by Pneumatic Muscles
,”
IEEE Trans. Control Syst. Technol.
,
17
(
3
), pp.
576
588
. 10.1109/TCST.2008.2001715
41.
Khoa
,
L. D.
,
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2013
, “
Synchronization Controller for a 3-R Planar Parallel Pneumatic Artificial Muscle (PAM) Robot Using Modified ANFIS Algorithm
,”
Mechatronics
,
23
(
4
), pp.
462
479
. 10.1016/j.mechatronics.2013.03.011
42.
Hassan
,
M.
, and
Khajepour
,
A.
, “
Analysis of Bounded Cable Tensions in Cable-Actuated Parallel Manipulators
,”
IEEE Trans. Rob.
,
27
(
5
), pp.
891
900
. 10.1109/TRO.2011.2158693
43.
Kim
,
M.
,
Hiroyasu
,
T.
,
Miki
,
M.
, and
Watanabe
,
S.
,
2004
, “
SPEA2+: Improving the Performance of the Strength Pareto Evolutionary Algorithm 2
,”
Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.
3242
, pp.
742
751
.
44.
Pusey
,
J.
,
Fattah
,
A.
,
Agrawal
,
S.
, and
Messina
,
E.
,
2004
, “
Design and Workspace Analysis of a 6-6 Cable-Suspended Parallel Robot
,”
Mech. Mach. Theory
,
39
(
7
), pp.
761
778
. 10.1016/j.mechmachtheory.2004.02.010
45.
Behzadipour
,
S.
, and
Khajepour
,
A.
,
2006
, “
Stiffness of Cable-Based Parallel Manipulators With Application to Stability Analysis
,”
ASME J. Mech. Des.
128
(
1
), pp.
303
310
. 10.1115/1.2114890
46.
Boudreau
,
R.
, and
Turkkan
,
N.
,
1996
, “
Solving the Forward Kinematics of Parallel Manipulators With a Genetic Algorithm
,”
J. Rob. Syst.
,
13
(
2
), pp.
111
125
. 10.1002/(SICI)1097-4563(199602)13:2<111::AID-ROB4>3.0.CO;2-W
47.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands-Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
. 10.1177/027836498200100102
48.
Kurtz
,
R.
, and
Hayward
,
V.
,
1992
, “
Multiple-Goal Kinematic Optimization of a Parallel Spherical Mechanism with Actuator Redundancy
,”
IEEE Trans. Rob. Autom.
,
8
(
5
), pp.
644
651
. 10.1109/70.163788
49.
Khatami
,
S.
, and
Sassani
,
F.
,
2002
, “
Isotropic Design Optimization of Robotic Manipulators Using a Genetic Algorithm Method
,”
IEEE International Symposium on Intelligent Control—Proceedings
,
Vancouver, Canada
, pp.
562
567
.
50.
Huang
,
T.
,
Gosselin
,
C. M.
,
Whitehouse
,
D. J.
, and
Chetwynd
,
D. G.
,
2003
, “
Analytical Approach for Optimal Design of a Type of Spherical Parallel Manipulator Using Dexterous Performance Indices
,”
Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
, Vol.
217
, pp.
447
456
.
51.
Gosselin
,
C. M.
, and
Lavoie
,
E.
,
1993
, “
On the Kinematic Design of Spherical Three-Degree-of-Freedom Parallel Manipulators
,”
Int. J. Rob. Res.
,
12
(
4
), pp.
394
402
. 10.1177/027836499301200406
52.
Dasgupta
,
B.
, and
Mruthyunjaya
,
T. S.
,
2000
, “
Stewart Platform Manipulator: A Review
,”
Mech. Mach. Theory
,
35
(
1
), pp.
15
40
. 10.1016/S0094-114X(99)00006-3
53.
Diao
,
X.
,
Ma
,
O.
, and
Lu
,
Q.
,
2008
, “
Singularity Analysis of Planar Cable-Driven Parallel Robots
,”
2008 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2008
, pp.
272
277
.
54.
Krefft
,
M.
, and
Hesselbach
,
J.
,
2005
, “
Elastodynamic Optimization of Parallel Kinematics
,”
Proceedings of the 2005 IEEE Conference on Automation Science and Engineering, IEEE-CASE 2005
,
Edmonton, Canada
, pp.
357
362
.
55.
Mroz
,
G.
, and
Notash
,
L.
,
2004
, “
Design and Prototype of Parallel, Wire-Actuated Robots With a Constraining Linkage
,”
J. Rob. Syst.
,
21
(
12
), pp.
677
687
. 10.1002/rob.20044
56.
Colbrunn
,
R. W.
,
Nelson
,
G. M.
, and
Quinn
,
R. D.
,
2001
, “
Modeling of Braided Pneumatic Actuators for Robotic Control
,”
Proceedings of the International Conference on Intelligent Robots and Systems
,
Las Vegas, NV
,
Oct. 29–Nov. 3
, p.
2001
.
57.
Deb
,
K.
,
Pratap
,
A.
,
Agarwal
,
S.
, and
Meyarivan
,
T.
,
2002
, “
A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II
,”
IEEE Trans. Evol. Comput.
,
6
(
2
), pp.
182
197
. 10.1109/4235.996017
58.
Onaka
,
J. H. D.
,
Lima
,
Á. S. d.
,
Kataoka
,
V. d. S.
,
Bezerra
,
U. H.
,
Tostes
,
M. E. d. L.
,
Vieira
,
J. P. A.
, and
Carvalho
,
C. M.
,
2016
, “
Comparing NSGA-II and SPEA2 Metaheuristics in Solving the Problem of Optimal Capacitor Banks Placement and Sizing in Distribution Grids Considering Harmonic Distortion Restrictions
,”
2016 17th International Conference on Harmonics and Quality of Power (ICHQP)
, pp.
77
82
.
59.
Liang
,
Z.
,
Song
,
R.
,
Lin
,
Q.
,
Du
,
Z.
,
Chen
,
J.
,
Ming
,
Z.
, and
Yu
,
J.
,
2015
, “
A Double-Module Immune Algorithm for Multi-Objective Optimization Problems
,”
Appl. Soft Comput. J.
,
35
, pp.
161
174
. 10.1016/j.asoc.2015.06.022
You do not currently have access to this content.