Abstract

The designer generates a variant product by applying several design suggestions that fulfilled a variety of customer requirements. These design suggestions rely on multiple domains of expert knowledge, which are unstructured and implicit. Moreover, these design suggestions have an impact on assembly joint information (liaison), which makes the variant design a complex problem. To effectively support the designers, this work presents a knowledge-based decision support system for assembly variant design using ontology. First, a knowledge base is built by the development of an ontology to formally represent the taxonomy, properties, and causal relationships of/among core concepts involved in the variant design. Second, a five-step sequential procedure is established to facilitate the utilization of this knowledge base for decision-making in variant design. The procedure takes the extracted liaison information from the CAD model of an existing product as the input and further used for generating a set of variant design decisions as the output through Semantic Web Rule Language (SWRL) rule-based reasoning. The inferred outputs by the process of reasoning are the design suggestions, the variant design type required for each design suggestion, and its effect on joint information. Based on the evaluation of the ontology, the precision, recall, and F-measure obtained are 79.3%, 82.1%, and 80.67%, respectively. Finally, the efficacy of the knowledge-based decision support system is evaluated using case studies from the aerospace and automotive domain.

References

References
1.
Wang
,
A.
,
Koc
,
B.
, and
Nagi
,
R.
,
2005
, “
Complex Assembly Variant Design in Agile Manufacturing. Part II: Assembly Variant Design Methodology
,”
IIE Trans.
,
37
(
1
), pp.
17
33
. 10.1080/07408170590516773
2.
Lo
,
C. H.
,
Tseng
,
K. C.
, and
Chu
,
C. H.
,
2010
, “
One-Step QFD Based 3D Morphological Charts for Concept Generation of Product Variant Design
,”
Expert Syst. Appl.
,
37
(
11
), pp.
7351
7363
. 10.1016/j.eswa.2010.04.028
3.
Lowe
,
A.
,
McMahon
,
C.
, and
Culley
,
S.
,
2004
, “
Information Access, Storage and Use by Engineering Designers, Part 1
,”
J. Inst. Eng. Des.
,
30
(
2
), pp.
30
32
.
4.
Ming
,
Z.
,
Nellippallil
,
A. B.
,
Yan
,
Y.
,
Wang
,
G.
,
Goh
,
C. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
PDSIDES—A Knowledge-Based Platform for Decision Support in the Design of Engineering Systems
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
4
), p.
041001
. 10.1115/1.4040461
5.
Swain
,
A. K.
,
Sen
,
D.
, and
Gurumoorthy
,
B.
,
2014
, “
Extended Liaison as an Interface Between Product and Process Model in Assembly
,”
Robot. Comput. Integr. Manufac.
,
30
(
5
), pp.
527
545
. 10.1016/j.rcim.2014.02.005
6.
Das
,
S. K.
, and
Swain
,
A. K.
,
2019
, “
Classification, Representation and Automatic Extraction of Adhesively Bonded Assembly Features
,”
Assembly Autom.
,
39
(
4
), pp.
607
623
. 10.1108/AA-07-2018-095
7.
Sambhoos
,
K.
,
Koc
,
B.
, and
Nagi
,
R.
,
2009
, “
Extracting Assembly Mating Graphs for Assembly Variant Design
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
3
), p.
034501
. 10.1115/1.3184607
8.
AlGeddawy
,
T.
, and
ElMaraghy
,
H.
,
2013
, “
Reactive Design Methodology for Product Family Platforms, Modularity and Parts Integration
,”
CIRP J. Manuf. Sci. Technol.
,
6
(
1
), pp.
34
43
. 10.1016/j.cirpj.2012.08.001
9.
Nanda
,
J.
,
Simpson
,
T. W.
,
Kumara
,
S. R.
, and
Shooter
,
S. B.
,
2006
, “
A Methodology for Product Family Ontology Development Using Formal Concept Analysis and Web Ontology Language
,”
ASME J. Comput. Inf. Sci. Eng.
,
6
(
2
), pp.
103
113
. 10.1115/1.2190237
10.
Lim
,
S. C. J.
,
Liu
,
Y.
, and
Lee
,
W. B.
,
2010
, “
Multi-facet Product Information Search and Retrieval Using Semantically Annotated Product Family Ontology
,”
Inf. Process. Manage.
,
46
(
4
), pp.
479
493
. 10.1016/j.ipm.2009.09.001
11.
Liu
,
Y.
,
Lim
,
S. C. J.
, and
Lee
,
W. B.
,
2013
, “
Product Family Design Through Ontology-Based Faceted Component Analysis, Selection, and Optimization
,”
ASME J. Mech. Des.
,
135
(
8
), p.
081007
. 10.1115/1.4023632
12.
Lim
,
S. C. J.
,
Liu
,
Y.
, and
Lee
,
W. B.
,
2011
, “
A Methodology for Building a Semantically Annotated Multi-faceted Ontology for Product Family Modelling
,”
Adv. Eng. Inform.
,
25
(
2
), pp.
147
161
. 10.1016/j.aei.2010.07.005
13.
Tiwari
,
V.
,
Jain
,
P. K.
, and
Tandon
,
P.
,
2015
, “
Design Decision Automation Support Through Knowledge Template CAD Model
,”
Comput. Aided Des. Appl.
,
12
(
1
), pp.
96
103
. 10.1080/16864360.2014.949580
14.
Guodong
,
Y.
,
Yu
,
Y.
, and
Aijun
,
L.
,
2016
, “
Joint Optimization of Complex Product Variant Design Responding to Customer Requirement Changes
,”
J. Intell. Fuzzy Syst.
,
30
(
1
), pp.
397
408
. 10.3233/IFS-151764
15.
Chang
,
X.
,
Rai
,
R.
, and
Terpenny
,
J.
,
2010
, “
Development and Utilization of Ontologies in Design for Manufacturing
,”
ASME J. Mech. Des.
,
132
(
2
), p.
021009
. 10.1115/1.4000697
16.
ElMaraghy
,
H.
, and
AlGeddawy
,
T.
,
2012
, “
New Dependency Model and Biological Analogy for Integrating Product Design for Variety With Market Requirements
,”
J. Eng. Des.
,
23
(
10–11
), pp.
722
745
. 10.1080/09544828.2012.709607
17.
Chen
,
C. Y.
,
Liao
,
G. Y.
, and
Lin
,
K. S.
,
2015
, “
An Attribute-Based and Object-Oriented Approach With System Implementation for Change Impact Analysis in Variant Product Design
,”
Comput. Aided Des.
,
62
, pp.
203
217
. 10.1016/j.cad.2014.11.006
18.
Xu
,
X.
,
Huang
,
T.
,
Wang
,
C.
,
Yuan
,
J.
, and
Zhu
,
F.
,
2016
, “
Logic Workflow Structure Modeling of Product Variant Design and Activity Path Generating
,”
Assembly Autom.
,
36
(
3
), pp.
333
348
. 10.1108/AA-02-2015-007
19.
Kretschmer
,
R.
,
Pfouga
,
A.
,
Rulhoff
,
S.
, and
Stjepandić
,
J.
,
2017
, “
Knowledge-Based Design for Assembly in Agile Manufacturing by Using Data Mining Methods
,”
Adv. Eng. Inform.
,
33
, pp.
285
299
. 10.1016/j.aei.2016.12.006
20.
Kim
,
K. Y.
,
Wang
,
Y.
,
Muogboh
,
O. S.
, and
Nnaji
,
B. O.
,
2004
, “
Design Formalism for Collaborative Assembly Design
,”
Comput. Aided Des.
,
36
(
9
), pp.
849
871
. 10.1016/j.cad.2003.09.011
21.
Kim
,
K. Y.
,
Manley
,
D. G.
, and
Yang
,
H.
,
2006
, “
Ontology-Based Assembly Design and Information Sharing for Collaborative Product Development
,”
Comput. Aided Des.
,
38
(
12
), pp.
1233
1250
. 10.1016/j.cad.2006.08.004
22.
Kim
,
K. Y.
,
Yang
,
H.
, and
Kim
,
D. W.
,
2008
, “
Mereotopological Assembly Joint Information Representation for Collaborative Product Design
,”
Robot. Comput. Integr. Manuf.
,
24
(
6
), pp.
744
754
. 10.1016/j.rcim.2008.03.010
23.
Kim
,
K. Y.
,
Chin
,
S.
,
Kwon
,
O.
, and
Ellis
,
R. D.
,
2009
, “
Ontology-Based Modeling and Integration of Morphological Characteristics of Assembly Joints for Network-Based Collaborative Assembly Design
,”
AI EDAM
,
23
(
1
), pp.
71
88
.
24.
Demoly
,
F.
,
Matsokis
,
A.
, and
Kiritsis
,
D.
,
2012
, “
A Mereotopological Product Relationship Description Approach for Assembly Oriented Design
,”
Robot. Comput. Integr. Manuf.
,
28
(
6
), pp.
681
693
. 10.1016/j.rcim.2012.03.003
25.
Gruhier
,
E.
,
Demoly
,
F.
,
Dutartre
,
O.
,
Abboudi
,
S.
, and
Gomes
,
S.
,
2015
, “
A Formal Ontology-Based Spatiotemporal Mereotopology for Integrated Product Design and Assembly Sequence Planning
,”
Adv. Eng. Inform.
,
29
(
3
), pp.
495
512
. 10.1016/j.aei.2015.04.004
26.
Wallace
,
E.
,
Kiritsis
,
D.
,
Smith
,
B.
, and
Will
,
C.
,
2018
, “
The Industrial Ontologies Foundry Proof-of-Concept Project
,”
IFIP International Conference on Advances in Production Management Systems
,
Cham, Switzerland
,
Aug. 25
, pp.
402
409
.
27.
Smith
,
B.
,
Ameri
,
F.
,
Cheong
,
H.
,
Kiritsis
,
D.
,
Sormaz
,
D.
,
Will
,
C.
, and
Otte
,
J. N.
,
2019
, “
A First-Order Logic Formalization of the Industrial Ontology Foundry Signature Using Basic Formal Ontology
,”
In Proceedings of the Joint Ontology Workshops (JOWO)
,
Graz, Austria
.
28.
Otte
,
J. N.
,
Kiritsi
,
D.
,
Ali
,
M. M.
,
Yang
,
R.
,
Zhang
,
B.
,
Rudnicki
,
R.
,
Rai
,
R.
, and
Smith
,
B.
,
2019
, “
An Ontological Approach to Representing the Product Life Cycle
,”
Appl. Ontol.
,
14
(
2
), pp.
179
197
. 10.3233/AO-190210
29.
Arista
,
R.
,
Mas
,
F.
,
Oliva
,
M.
, and
Morales-Palma
,
D.
,
2019
, “
Applied Ontologies for Assembly System Design and Management Within the Aerospace Industry
,”
JOWO
.
30.
Thevenot
,
H. J.
, and
Simpson
,
T. W.
,
2006
, “
Commonality Indices for Product Family Design: A Detailed Comparison
,”
J. Eng. Des.
,
17
(
2
), pp.
99
119
. 10.1080/09544820500275693
31.
Ahmad
,
M.
,
Ferrer
,
B. R.
,
Ahmad
,
B.
,
Vera
,
D.
,
Lastra
,
J. L. M.
, and
Harrison
,
R.
,
2018
, “
Knowledge-Based PPR Modelling for Assembly Automation
,”
CIRP J. Manuf. Sci. Technol.
,
21
, pp.
33
46
. 10.1016/j.cirpj.2018.01.001
32.
Imran
,
M.
, and
Young
,
B.
,
2015
, “
The Application of Common Logic Based Formal Ontologies to Assembly Knowledge Sharing
,”
J. Intell. Manuf.
,
26
(
1
), pp.
139
158
. 10.1007/s10845-013-0768-4
33.
Abadi
,
A.
,
Ben-Azza
,
H.
, and
Sekkat
,
S.
,
2017
, “
An Ontology-Based Support for Knowledge Modeling and Decision-Making in Collaborative Product Design
,”
Int. J. Appl. Eng. Res.
,
12
(
16
), pp.
5739
5759
.
34.
Ming
,
Z.
,
Wang
,
G.
,
Yan
,
Y.
,
Panchal
,
J. H.
,
Goh
,
C. H.
,
Allen
,
J. K.
, and
Mistree
,
F.
,
2018
, “
Ontology-Based Representation of Design Decision Hierarchies
,”
ASME J. Comput. Inf. Sci. Eng.
,
18
(
1
), p.
011001
. 10.1115/1.4037934
35.
Chen
,
S.
,
Yi
,
J.
,
Jiang
,
H.
, and
Zhu
,
X.
,
2016
, “
Ontology and CBR Based Automated Decision-Making Method for the Disassembly of Mechanical Products
,”
Adv. Eng. Inform.
,
30
(
3
), pp.
564
584
. 10.1016/j.aei.2016.06.005
36.
Das
,
S. K.
, and
Swain
,
A. K.
,
2016
, “
Knowledge-based Application of Liaison for Variant Design
,”
IFIP International Conference on Product Lifecycle Management
,
Cham, Switzerland
,
July 11
, pp.
365
374
.
37.
Stanford University
,
2017
, “
Protege 5.2 Release
,”
Stanford University
,
Stanford, CA
, https://protegewiki.stanford.edu/wiki/Protege-OWL_5.2, Accessed March 15, 2017.
38.
O’Connor
,
M.
,
2018
,
SWRLTap: A Development Environment for Working With SWRL Rules in Protégé-OWL
, https://protege.stanford.edu/conference/2007/slides/08.01_OConnor.pdf, Accessed July 21, 2020.
39.
Chu
,
C. H.
,
Luh
,
Y. P.
,
Li
,
T. C.
, and
Chen
,
H.
,
2009
, “
Economical Green Product Design Based on Simplified Computer-Aided Product Structure Variation
,”
Comput. Ind.
,
60
(
7
), pp.
485
500
. 10.1016/j.compind.2009.02.003
40.
Global Driveshaft Spec Guide
,”
Dana Incorporated
, http://global.dana.com/commercial-vehicles/products/driveline/driveshafts/compact-series, Accessed August 28, 2014.
41.
Wang
,
A.
,
Koc
,
B.
, and
Nagi
,
R.
,
2005
, “
Complex Assembly Variant Design in Agile Manufacturing. Part I: System Architecture and Assembly Modeling Methodology
,”
IIE Trans.
,
37
(
1
), pp.
1
15
. 10.1080/07408170590516764
You do not currently have access to this content.