Abstract

This paper proposes a hybrid uncertainty analysis method (HUAM) based on the first-order interval perturbation method (FIPM) and Monte Carlo method (MCM) for minimum resultant force response analysis of the lower limb traction device (LLTD) of a hybrid-driven parallel waist rehabilitation robot (HDPWRR) with interval parameters. Based on the analysis of cable angles by using the interval algorithm, the problem of non-uniqueness of the force solution in redundant constraint mechanisms is solved. The force response domain prediction with interval parameters on rehabilitation patients is estimated by using the HUAM which combining the first-order interval perturbation technique with direct Monte Carlo method in different stages, and it reduces the calculation amount. First, the kinematic and static models of the LLTD with deterministic information are established according to its work principle. Then, the interval matrices with interval parameters are calculated by using the FIPM and the response of cable angles is combined with the static model. Third, by numerical examples, the accuracy and efficiency of the HUAM for solving the force response domain problem with interval parameters are verified. The bounds of cable angle response domain of the interval LLTD model are determined. Finally, the minimum resultant force response domain prediction with interval parameters on rehabilitation patients is estimated by combining the FIPM and MCM.

References

1.
Zhang
,
M.
,
Xie
,
S. Q.
,
Li
,
X.
,
Zhu
,
G.
,
Meng
,
W.
,
Huang
,
X.
, and
Veale
,
A. J.
,
2017
, “
Adaptive Patient-Cooperative Control of a Compliant Ankle Rehabilitation Robot (CARR) With Enhanced Training Safety
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1398
1407
. 10.1109/TIE.2017.2733425
2.
Li
,
J.
,
Li
,
S.
,
Ke
,
Y.
, and
Li
,
S.
,
2019
, “
Safety Design and Performance Analysis of Humanoid Rehabilitation Robot With Compliant Joint
,”
J. Mech. Sci. Technol.
,
33
(
1
), pp.
357
366
. 10.1007/s12206-018-1137-1
3.
Chen
,
X.
,
Zhao
,
H.
,
Zhen
,
S.
, and
Sun
,
H.
,
2019
, “
Adaptive Robust Control for a Lower Limbs Rehabilitation Robot Running Under Passive Training Mode
,”
IEEE/CAA J. Autom. Sin.
,
6
(
2
), pp.
493
502
. 10.1109/JAS.2019.1911402
4.
Niu
,
J.
,
Yang
,
Q.
,
Chen
,
G.
, and
Song
,
R.
,
2017
, “
Nonlinear Disturbance Observer Based Sliding Mode Control of a Cable-Driven Rehabilitation Robot
,”
Proceedings of International Conference on Rehabilitation Robotics (ICORR)
,
London
,
July 17–20
,
IEEE
, pp.
664
669
.
5.
Gharatappeh
,
S.
,
Abbasnejad
,
G.
,
Yoon
,
J.
, and
Lee
,
H.
,
2015
, “
Control of Cable-Driven Parallel Robot for Gait Rehabilitation
,”
Proceedings of 12th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI)
,
Goyang, South Korea
,
Oct. 28–30
,
IEEE
, pp.
377
381
.
6.
Qian
,
S.
,
Zi
,
B.
,
Shang
,
W. W.
, and
Xu
,
Q. S.
,
2018
, “
A Review on Cable-Driven Parallel Robots
,”
Chin. J. Mech. Eng.
,
31
(
1
), p.
66
. 10.1186/s10033-018-0267-9
7.
Yamaura
,
H.
,
Matsushita
,
K.
,
Kato
,
R.
, and
Yokoi
,
H.
,
2009
, “
Development of Hand Rehabilitation System Using Wire-Driven Link Mechanism for Paralysis Patients
,”
Proceedings of IEEE International Conference on Robotics and Biomimetics (ROBIO)
,
Guilin, China
,
December 19–23
,
IEEE
, pp.
209
214
.
8.
Gao
,
B.
,
Song
,
H.
,
Zhao
,
J.
,
Guo
,
S.
,
Sun
,
L.
, and
Tang
,
Y.
,
2014
, “
Inverse Kinematics and Workspace Analysis of a Cable-Driven Parallel Robot With a Spring Spine
,”
Mech. Mach. Theory
,
76
, pp.
56
69
. 10.1016/j.mechmachtheory.2014.01.016
9.
Yun
,
D.
,
Khan
,
A. M.
,
Yan
,
R. J.
,
Ji
,
Y.
,
Jang
,
H.
,
Iqbal
,
J.
, and
Han
,
C.
,
2016
, “
Handling Subject Arm Uncertainties for Upper Limb Rehabilitation Robot Using Robust Sliding Mode Control
,”
Int. J. Precis. Eng. Manuf.
,
17
(
3
), pp.
355
362
. 10.1007/s12541-016-0044-6
10.
Ben-Haim
,
Y.
, and
Elishakoff
,
I.
,
2013
,
Convex Models of Uncertainty in Applied Mechanics
,
Elsevier
,
Amsterdam, The Netherlands
.
11.
Xia
,
B.
,
Qin
,
Y.
,
Yu
,
D.
, and
Jiang
,
C.
,
2016
, “
Dynamic Response Analysis of Structure Under Time-Variant Interval Process Model
,”
J. Sound Vib.
,
381
, pp.
121
138
. 10.1016/j.jsv.2016.06.030
12.
Zi
,
B.
,
Zhou
,
B.
,
Zhu
,
W.
, and
Wang
,
D.
,
2019
, “
Hybrid Function-Based Moment Method for Luffing Angular Response of Dual Automobile Crane System With Random and Interval Parameters
,”
ASME J. Comput. Nonlin. Dyn.
,
14
(
1
), p.
011003
. 10.1115/1.4041967
13.
Moore
,
R. E.
,
1966
,
Interval Analysis
, Vol.
4
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
14.
Du
,
X.
,
Tang
,
Z.
, and
Xue
,
Q.
,
2014
, “
Interval Inverse Analysis of Hyperbolic Heat Conduction Problem
,”
Int. Commun. Heat Mass Transfer
,
54
, pp.
75
80
. 10.1016/j.icheatmasstransfer.2014.03.014
15.
Wang
,
C.
,
Qiu
,
Z.
, and
He
,
Y.
,
2015
, “
Fuzzy Interval Perturbation Method for Uncertain Heat Conduction Problem With Interval and Fuzzy Parameters
,”
Int. J. Numer. Methods Eng.
,
104
(
5
), pp.
330
346
. 10.1002/nme.4932
16.
Wang
,
C.
, and
Qiu
,
Z.
,
2014
, “
An Interval Perturbation Method for Exterior Acoustic Field Prediction With Uncertain-But-Bounded Parameters
,”
J. Fluids Struct.
,
49
, pp.
441
449
. 10.1016/j.jfluidstructs.2014.05.005
17.
Yin
,
S.
,
Yu
,
D.
,
Yin
,
H.
, and
Xia
,
B.
,
2016
, “
Interval and Random Analysis for Structure–Acoustic Systems With Large Uncertain-But-Bounded Parameters
,”
Comput. Methods Appl. Mech. Eng.
,
305
, pp.
910
935
. 10.1016/j.cma.2016.03.034
18.
Wang
,
C.
,
Qiu
,
Z.
,
Wang
,
X.
, and
Wu
,
D.
,
2014
, “
Interval Finite Element Analysis and Reliability-Based Optimization of Coupled Structural-Acoustic System With Uncertain Parameters
,”
Finite Elem. Anal. Des.
,
91
, pp.
108
114
. 10.1016/j.finel.2014.07.014
19.
Sofi
,
A.
,
Muscolino
,
G.
, and
Elishakoff
,
I.
,
2015
, “
Natural Frequencies of Structures With Interval Parameters
,”
J. Sound Vib.
,
347
, pp.
79
95
. 10.1016/j.jsv.2015.02.037
20.
Zi
,
B.
,
Zhou
,
B.
, and
Zhu
,
W.
,
2019
, “
Modified First-Order Compound Function-Based Interval Perturbation Method for Luffing Angular Response of Dual Automobile Crane System With Interval Variables
,”
ASME J. Comput. Inf. Sci. Eng.
,
19
(
4
), p.
041013
. 10.1115/1.4043041
21.
Jiang
,
C.
,
Li
,
W. X.
,
Han
,
X.
,
Liu
,
L. X.
, and
Le
,
P. H.
,
2011
, “
Structural Reliability Analysis Based on Random Distributions With Interval Parameters
,”
Comput. Struct.
,
89
(
23–24
), pp.
2292
2302
. 10.1016/j.compstruc.2011.08.006
22.
Zhan
,
Z.
,
Zhang
,
X.
,
Jian
,
Z.
, and
Zhang
,
H.
,
2018
, “
Error Modelling and Motion Reliability Analysis of a Planar Parallel Manipulator With Multiple Uncertainties
,”
Mech. Mach. Theory
,
124
, pp.
55
72
. 10.1016/j.mechmachtheory.2018.02.005
23.
Edgecombe
,
S.
, and
Linse
,
P.
,
2008
, “
Monte Carlo Simulation of Two Interpenetrating Polymer Networks: Structure, Swelling, and Mechanical Properties
,”
Polymer
,
49
(
7
), pp.
1981
1992
. 10.1016/j.polymer.2008.02.018
24.
Qiu
,
Z.
, and
Elishakoff
,
I.
,
1998
, “
Antioptimization of Structures With Large Uncertain-But-Non-Random Parameters Via Interval Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
152
(
3–4
), pp.
361
372
. 10.1016/S0045-7825(96)01211-X
25.
Rubinstein
,
R. Y.
, and
Kroese
,
D. P.
,
2016
,
Simulation and the Monte Carlo Method
, Vol.
10
,
John Wiley and Sons
,
NJ
.
26.
Armiyoon
,
A. R.
, and
Wu
,
C. Q.
,
2015
, “
A Novel Method to Identify Boundaries of Basins of Attraction in a Dynamical System Using Lyapunov Exponents and Monte Carlo Techniques
,”
Nonlinear Dyn.
,
79
(
1
), pp.
275
293
. 10.1007/s11071-014-1663-z
27.
Cao
,
Y.
,
Lu
,
K.
,
Li
,
X.
, and
Zang
,
Y.
,
2011
, “
Accurate Numerical Methods for Computing 2d and 3d Robot Workspace
,”
Int. J. Adv. Robot. Syst.
,
8
(
6
), p.
76
. 10.5772/45686
28.
Chaudhury
,
A. N.
, and
Ghosal
,
A.
,
2017
, “
Optimum Design of Multi-Degree-Of-Freedom Closed-Loop Mechanisms and Parallel Manipulators for a Prescribed Workspace Using Monte Carlo Method
,”
Mech. Mach. Theory
,
118
, pp.
115
138
. 10.1016/j.mechmachtheory.2017.07.021
29.
Xu
,
D.
,
2018
, “
Kinematic Reliability and Sensitivity Analysis of the Modified Delta Parallel Mechanism
,”
Int. J. Adv. Robot. Syst.
,
15
(
1
), p.
1729881418759106
.
30.
Vieira
,
H. L.
,
Wajnberg
,
E.
,
Beck
,
A. T.
, and
da Silva
,
M. M.
,
2019
, “
Reliable Motion Planning for Parallel Manipulators
,”
Mech. Mach. Theory
,
140
, pp.
553
566
. 10.1016/j.mechmachtheory.2019.06.022
31.
Chen
,
Q.
,
Zi
,
B.
,
Sun
,
Z.
,
Li
,
Y.
, and
Xu
,
Q.
,
2019
, “
Design and Development of a New Cable-Driven Parallel Robot for Waist Rehabilitation
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1497
1507
. 10.1109/TMECH.2019.2917294
You do not currently have access to this content.