Abstract

Carbon fiber-reinforced polymer (CFRP) composites have been used extensively in the aerospace and automotive industries due to their high strength-to-weight and stiffness-to-weight ratios. Compared with conventional manufacturing processes for CFRP, additive manufacturing (AM) can facilitate the fabrication of CFRP components with complex structures. While AM offers significant advantages over conventional processes, establishing the structure–property relationships in additively manufactured CFRP remains a challenge because the mechanical properties of additively manufactured CFRP depend on many design parameters. To address this issue, we introduce a data-driven modeling approach that predicts the flexural strength of continuous carbon fiber-reinforced polymers (CCFRP) fabricated by fused deposition modeling (FDM). The predictive model of flexural strength is trained using machine learning and validated on experimental data. The relationship between three structural design factors, including the number of fiber layers, the number of fiber rings as well as polymer infill patterns, and the flexural strength of the CCFRP specimens is quantified.

References

1.
Holmes
,
M.
,
2014
, “
Global Carbon Fibre Market Remains on Upward Trend
,”
Reinf. Plast.
,
58
(
6
), pp.
38
45
. 10.1016/S0034-3617(14)70251-6
2.
Wang
,
X.
,
Jiang
,
M.
,
Zhou
,
Z.
,
Gou
,
J.
, and
Hui
,
D.
,
2017
, “
3D Printing of Polymer Matrix Composites: A Review and Prospective
,”
Composites Part B
,
110
, pp.
442
458
. 10.1016/j.compositesb.2016.11.034
3.
Bakis
,
C. E.
,
Bank
,
L. C.
,
Brown
,
V.
,
Cosenza
,
E.
,
Davalos
,
J.
,
Lesko
,
J.
,
Machida
,
A.
,
Rizkalla
,
S.
, and
Triantafillou
,
T.
,
2002
, “
Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review
,”
J. Compos. Constr.
,
6
(
2
), pp.
73
87
. 10.1061/(ASCE)1090-0268(2002)6:2(73)
4.
Kretsis
,
G.
,
1987
, “
A Review of the Tensile, Compressive, Flexural and Shear Properties of Hybrid Fibre-Reinforced Plastics
,”
Composites
,
18
(
1
), pp.
13
23
. 10.1016/0010-4361(87)90003-6
5.
Ramakrishna
,
S.
,
Mayer
,
J.
,
Wintermantel
,
E.
, and
Leong
,
K. W.
,
2001
, “
Biomedical Applications of Polymer-Composite Materials: A Review
,”
Compos. Sci. Technol.
,
61
(
9
), pp.
1189
1224
. 10.1016/S0266-3538(00)00241-4
6.
Machado
,
J.
,
Marques
,
E.
,
Campilho
,
R.
, and
da Silva
,
L. F.
,
2017
, “
Mode II Fracture Toughness of CFRP as a Function of Temperature and Strain Rate
,”
Composites Part B
,
114
, pp.
311
318
. 10.1016/j.compositesb.2017.02.013
7.
Li
,
T.
, and
Wang
,
L.
,
2017
, “
Bending Behavior of Sandwich Composite Structures With Tunable 3D-Printed Core Materials
,”
Compos. Struct.
,
175
, pp.
46
57
. 10.1016/j.compstruct.2017.05.001
8.
Keller
,
T.
, and
Schollmayer
,
M.
,
2004
, “
Plate Bending Behavior of a Pultruded GFRP Bridge Deck System
,”
Compos. Struct.
,
64
(
3-4
), pp.
285
295
. 10.1016/j.compstruct.2003.08.011
9.
Wang
,
Z.
,
Lauter
,
C.
,
Sanitther
,
B.
,
Camberg
,
A.
, and
Troester
,
T.
,
2016
, “
Manufacturing and Investigation of Steel-CFRP Hybrid Pillar Structures for Automotive Applications by Intrinsic Resin Transfer Moulding Technology
,”
Int. J. Automot. Compos.
,
2
(
3-4
), pp.
229
243
. 10.1504/IJAUTOC.2016.084322
10.
Ikpe
,
A.
,
Owunna
,
I.
, and
Satope
,
P.
,
2017
, “
Design Optimization of a B-Pillar for Crashworthiness of Vehicle Side Impact
,”
J. Mech. Eng. Sci.
,
11
(
2
), pp.
2693
2710
. 10.15282/jmes.11.2.2017.11.0245
11.
Parandoush
,
P.
, and
Lin
,
D.
,
2017
, “
A Review on Additive Manufacturing of Polymer-Fiber Composites
,”
Compos. Struct.
,
182
, pp.
36
53
. 10.1016/j.compstruct.2017.08.088
12.
Tian
,
X.
,
Liu
,
T.
,
Yang
,
C.
,
Wang
,
Q.
, and
Li
,
D.
,
2016
, “
Interface and Performance of 3D Printed Continuous Carbon Fiber Reinforced PLA Composites
,”
Composites Part A
,
88
, pp.
198
205
. 10.1016/j.compositesa.2016.05.032
13.
Li
,
N.
,
Li
,
Y.
, and
Liu
,
S.
,
2016
, “
Rapid Prototyping of Continuous Carbon Fiber Reinforced Polylactic Acid Composites by 3D Printing
,”
J. Mater. Process. Technol.
,
238
, pp.
218
225
. 10.1016/j.jmatprotec.2016.07.025
14.
Ning
,
F.
,
Cong
,
W.
,
Wei
,
J.
,
Wang
,
S.
, and
Zhang
,
M.
,
2015
, “
Additive Manufacturing of CFRP Composites Using Fused Deposition Modeling: Effects of Carbon Fiber Content and Length
,”
ASME 2015 International Manufacturing Science and Engineering Conference
,
Charlotte, NC
,
June 8–12
, American Society of Mechanical Engineers, p. V001T02A067.
15.
Dickson
,
A. N.
,
Barry
,
J. N.
,
McDonnell
,
K. A.
, and
Dowling
,
D. P.
,
2017
, “
Fabrication of Continuous Carbon, Glass and Kevlar Fibre Reinforced Polymer Composites Using Additive Manufacturing
,”
Addit. Manuf.
,
16
, pp.
146
152
.
16.
Ning
,
F.
,
Cong
,
W.
,
Qiu
,
J.
,
Wei
,
J.
, and
Wang
,
S.
,
2015
, “
Additive Manufacturing of Carbon Fiber Reinforced Thermoplastic Composites Using Fused Deposition Modeling
,”
Composites Part B
,
80
, pp.
369
378
. 10.1016/j.compositesb.2015.06.013
17.
Love
,
L. J.
,
Kunc
,
V.
,
Rios
,
O.
,
Duty
,
C. E.
,
Elliott
,
A. M.
,
Post
,
B. K.
,
Smith
,
R. J.
, and
Blue
,
C. A.
,
2014
, “
The Importance of Carbon Fiber to Polymer Additive Manufacturing
,”
J. Mater. Res.
,
29
(
17
), pp.
1893
1898
. 10.1557/jmr.2014.212
18.
Hwang
,
S.
,
Reyes
,
E. I.
,
Moon
,
K.-S.
,
Rumpf
,
R. C.
, and
Kim
,
N. S.
,
2015
, “
Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process
,”
J. Electron. Mater.
,
44
(
3
), pp.
771
777
. 10.1007/s11664-014-3425-6
19.
Wang
,
Y. C.
,
Wong
,
P.
, and
Kodur
,
V.
,
2007
, “
An Experimental Study of the Mechanical Properties of Fibre Reinforced Polymer (FRP) and Steel Reinforcing Bars at Elevated Temperatures
,”
Compos. Struct.
,
80
(
1
), pp.
131
140
. 10.1016/j.compstruct.2006.04.069
20.
Perez
,
A. R. T.
,
Roberson
,
D. A.
, and
Wicker
,
R. B.
,
2014
, “
Fracture Surface Analysis of 3D-Printed Tensile Specimens of Novel ABS-Based Materials
,”
J. Failure Anal. Prev.
,
14
(
3
), pp.
343
353
. 10.1007/s11668-014-9803-9
21.
Yu
,
T.
,
Zhang
,
Z.
,
Song
,
S.
,
Bai
,
Y.
, and
Wu
,
D.
,
2019
, “
Tensile and Flexural Behaviors of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites
,”
Compos. Struct.
,
225
, p.
111147
. 10.1016/j.compstruct.2019.111147
22.
Zhou
,
Z.-H.
,
2012
,
Ensemble Methods: Foundations and Algorithms
,
CRC Press
,
Boca Raton, FL
.
23.
Sun
,
T.
, and
Zhou
,
Z.-H.
,
2018
, “
Structural Diversity for Decision Tree Ensemble Learning
,”
Frontiers Computer Sci.
,
12
(
3
), pp.
560
570
. 10.1007/s11704-018-7151-8
24.
Friedman
,
J.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2001
,
The Elements of Statistical Learning
,
Springer Series in Statistics
,
New York
.
25.
James
,
G.
,
Witten
,
D.
,
Hastie
,
T.
, and
Tibshirani
,
R.
,
2013
,
An Introduction to Statistical Learning
,
Springer
,
New York
.
26.
Friedman
,
J. H.
,
1991
, “
Multivariate Adaptive Regression Splines
,”
Ann. Stat.
,
19
(
1
), pp.
1
67
. 10.1214/aos/1176347963
27.
Hastie
,
T. J.
, and
Tibshirani
,
R.J.
,
1990
,
Generalized Additive Models
, Vol.
43
,
CRC Press
,
Boca Raton, FL
.
28.
Wood
,
S. N.
,
2017
,
Generalized Additive Models: An Introduction With R
,
CRC Press
,
Boca Raton, FL
.
29.
Weinberger
,
K. Q.
, and
Saul
,
L. K.
,
2009
, “
Distance Metric Learning for Large Margin Nearest Neighbor Classification
,”
J. Mach. Learn. Res.
,
10
(
Feb
), pp.
207
244
.
30.
Drucker
,
H.
,
Burges
,
C. J.
,
Kaufman
,
L.
,
Smola
,
A. J.
, and
Vapnik
,
V.
,
1996
, “
Support Vector Regression Machines
,”
Neural Information Processing Systems
,
Denver, CO
,
Dec. 3–5
.
31.
Karatzoglou
,
A.
,
Meyer
,
D.
, and
Hornik
,
K.
,
2006
, “
Support Vector Machines in R
,”
J. Stat. Softw.
,
15
(
9
), pp.
1
28
.
32.
Geurts
,
P.
,
Ernst
,
D.
, and
Wehenkel
,
L.
,
2006
, “
Extremely Randomized Trees
,”
Mach. Learn.
,
63
(
1
), pp.
3
42
. 10.1007/s10994-006-6226-1
33.
Chen
,
T.
, and
Guestrin
,
C.
,
2016
, “
Xgboost: A Scalable Tree Boosting System
,”
22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining
,
San Francisco, CA
,
Aug. 13–17
, ACM, pp.
785
794
.
34.
Khakalo
,
S.
,
Balobanov
,
V.
, and
Niiranen
,
J.
,
2018
, “
Modelling Size-Dependent Bending, Buckling and Vibrations of 2D Triangular Lattices by Strain Gradient Elasticity Models: Applications to Sandwich Beams and Auxetics
,”
Int. J. Eng. Sci.
,
127
, pp.
33
52
. 10.1016/j.ijengsci.2018.02.004
35.
ASTM International
,
2017
,
D6272-17 Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials by Four-Point Bending
,
ASTM International
,
West Conshohocken, PA
.
36.
Wuest
,
T.
,
Weimer
,
D.
,
Irgens
,
C.
, and
Thoben
,
K.-D.
,
2016
, “
Machine Learning in Manufacturing: Advantages, Challenges, and Applications
,”
Prod. Manuf. Res.
,
4
(
1
), pp.
23
45
. 10.1080/21693277.2016.1192517
37.
Liu
,
X.
,
Liu
,
Z.
,
Wang
,
G.
,
Cai
,
Z.
, and
Zhang
,
H.
,
2017
, “
Ensemble Transfer Learning Algorithm
,”
IEEE Access
,
6
, pp.
2389
2396
. 10.1109/ACCESS.2017.2782884
You do not currently have access to this content.