Abstract

This paper presents an implementation of a homotopy path tracking algorithm for polynomial numerical continuation on a graphical processing unit (GPU). The goal of this algorithm is to track homotopy curves from known roots to the unknown roots of a target polynomial system. The path tracker solves a set of ordinary differential equations to predict the next step and uses a Newton root finder to correct the prediction so the path stays on the homotopy solution curves. In order to benefit from the computational performance of a GPU, we organize the procedure so it is executed as a single instruction set, which means the path tracker has a fixed step size and the corrector has a fixed number iterations. This trade-off between accuracy and GPU computation speed is useful in numerical kinematic synthesis where a large number of solutions must be generated to find a few effective designs. In this paper, we show that our implementation of GPU-based numerical continuation yields 85 effective designs in 63 s, while an existing numerical continuation algorithm yields 455 effective designs in 2 h running on eight threads of a workstation.

References

References
1.
Freudenstein
,
F.
, and
Roth
,
B.
,
1963
, “
Numerical Solution of Systems of Nonlinear Equations
,”
J. ACM
,
10
(
4
), pp.
550
556
. 10.1145/321186.321200
2.
Roth
,
B.
, and
Freudenstein
,
F.
,
1963
, “
Synthesis of Path-Generating Mechanisms by Numerical Methods
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
298
304
. 10.1115/1.3669870
3.
Wampler
,
C. W.
,
Morgan
,
A. P.
, and
Sommese
,
A. J.
,
1992
, “
Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages
,”
ASME J. Mech. Des.
,
114
(
1
), pp.
153
159
. 10.1115/1.2916909
4.
Zangwill
,
W. I.
, and
Garcia
,
C. B.
,
1981
,
Pathways to Solutions, Fixed Points and Equilibria
,
Prentice-Hall, Inc.
,
Upper Saddle River, NJ
.
5.
Morgan
,
A. P.
,
1983
, “
A Method for Computing All Solutions to Systems of Polynomials Equations
,”
ACM Trans. Math. Software
,
9
(
1
), pp.
1
17
. 10.1145/356022.356023
6.
Tsai
,
L. W.
, and
Morgan
,
A. P.
,
1985
, “
Solving the Kinematics of the Most General Six- And Five-Degree-of-Freedom Manipulators by Continuation Methods
,”
J. Mech., Transm. Autom. Des.
,
107
(
2
), p.
189
. 10.1115/1.3258708
7.
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2005
,
The Numerical Solution of Systems of Polynomials: Arising in Engineering And Science
,
World Scientific Pub Co.
,
Singapore
.
8.
Bates
,
D. J.
,
Hauenstein
,
J. D.
,
Sommese
,
A. J.
, and
Wampler
,
C. W.
,
2013
,
Numerically Solving Polynomial Systems with Bertini
,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
.
9.
Verschelde
,
J.
,
2010
, “
Polynomial Homotopy Continuation With Phcpack
,”
ACM Commun. Comput. Algebra
,
44
(
3/4
), pp.
217
220
. 10.1145/1940475.1940524
10.
Li
,
T. Y.
, and
Tsai
,
C.-H.
,
2009
, “
HOM4PS-2.0 Para: Parallelization of HOM4PS-2.0 for Solving Polynomial Systems
,”
Parallel Comput.
,
35
(
4
), pp.
226
238
. 10.1016/j.parco.2008.12.003
11.
Su
,
H.-J.
,
McCarthy
,
J. M.
,
Sosonkina
,
M.
, and
Watson
,
L. T.
,
2006
, “
Algorithm 857: POLSYS GLP: A Parallel General Linear Product Homotopy Code for Solving Polynomial Systems of Equations.
,”
ACM Trans. Math. Software
,
32
(
4
), pp.
561
579
. 10.1145/1186785.1186789
12.
Parker
,
M.
,
2017
,
Digital Signal Processing 101: Everything You Need to Know to Get Started
,
Elsevier Inc.
,
Amsterdam, Netherlands
.
13.
Hori
,
C.
,
Gotoh
,
H.
,
Ikari
,
H.
, and
Khayyer
,
A.
,
2011
, “
GPU-Acceleration for Moving Particle Semi-Implicit Method
,”
Comput. Fluids
,
51
(
1
), pp.
174
183
. 10.1016/j.compfluid.2011.08.004
14.
Pan
,
J.
,
Lauterbach
,
C.
, and
Manocha
,
D.
,
2010
, “
g-Planner: Real-Time Motion Planning and Global Navigation Using GPUs
,”
Twenty-Fourth AAAI Conference on Artificial Intelligence
,
Atlanta, GA
,
July 11–15
, pp.
1245
1251
.
15.
Ichter
,
B.
,
Schmerling
,
E.
,
Agha-Mohammadi
,
A.
, and
Pavone
,
M.
,
2017
, “
Real-Time Stochastic Kinodynamic Motion Planning Via Multiobjective Search on GPUs
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore, Singapore
,
May 29–June 3
, pp.
5019
5026
.
16.
Dick
,
C.
,
Georgii
,
J.
, and
Westermann
,
R.
,
2011
, “
A Real-Time Multigrid Finite Hexahedra Method for Elasticity Simulation Using CUDA
,”
Simul. Modell. Pract. Theory
,
19
(
2
), pp.
801
816
. 10.1016/j.simpat.2010.11.005
17.
Verschelde
,
J.
, and
Yoffe
,
G.
,
2012
, “
Evaluating Polynomials in Several Variables and Their Derivatives on a GPU Computing Processor
,”
2012 IEEE 26th International Parallel and Distributed Processing Symposium Workshops and PhD Forum
,
Shanghai
,
May 21–25
, pp.
1397
1405
.
18.
Verschelde
,
J.
, and
Yu
,
X.
,
2015
, “
Tracking Many Solution Paths of a Polynomial Homotopy on a Graphics Processing Unit in Double Double and Quad Double Arithmetic
,”
2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC)
,
New York
,
Aug. 24–26
, pp.
371
376
.
19.
Verschelde
,
J.
, and
Yu
,
X.
,
2015
, “
Accelerating Polynomial Homotopy Continuation on a Graphics Processing Unit With Double Double and Quad Double Arithmetic
,” CoRR, abs/1501.06625.
20.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2016
, “
Computational Design of Stephenson Ii Six-Bar Function Generators for 11 Accuracy Points
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011017
. 10.1115/1.4031124
21.
Cheney
,
W.
, and
Kincaid
,
D. R.
,
2012
,
Numerical Mathematics and Computing
,
Brooks Cole Pub. Co.
,
Pacific Grove, California
.
22.
Glabe
,
J.
, and
McCarthy
,
J. M.
,
2019
, “
Advances in Mechanism and Machine Science
,”
IFToMM World Conference
,
Krakow, Poland
,
June 3–July 4
.
23.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2011
,
Geometric Design of Linkages
,
Springer
,
New York
.
24.
Wolfram
,
S.
,
2003
,
The Mathematica Book
, 5th ed,
Wolfram Media
,
Champaign, IL
.
25.
Chase
,
T. R.
, and
Mirth
,
J. A.
,
1993
, “
Circuits and Branches of Single Degree-of-Freedom Planar Linkages
,”
ASME J. Mech. Des.
,
115
(
2
), pp.
223
230
. 10.1115/1.2919181
26.
Beloiu
,
A. S.
, and
Gupta
,
K. C.
,
1997
, “
A Unified Approach for the Investigation of Branch and Circuit Defects
,”
Mech. Mach. Theory
,
32
(
4
), pp.
539
557
. 10.1016/S0094-114X(96)00070-5
27.
Plecnik
,
M. M.
, and
McCarthy
,
J. M.
,
2011
, “
Five Position Synthesis of a Slider-Crank Function Generator
,”
Proceedings of the ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington, DC
,
Aug. 28–31
, pp.
317
324
.
28.
Tsuge
,
B. Y.
, and
McCarthy
,
J. M.
,
2016
, “
Homotopy Directed Optimization to Design a Six-Bar Linkage for a Lower Limb With a Natural Ankle Trajectory
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061009
. 10.1115/1.4034141
29.
Uicker
,
J. J.
,
Pennock
,
G. R.
, and
Shigley
,
J. E.
,
2016
,
Theory of Machines and Mechanisms
, 5th ed,
Oxford University Press
,
Oxford, UK
.
You do not currently have access to this content.