Abstract

Converting a hex mesh into a fundamental mesh by inserting fundamental sheets is an effective means to improve the hex mesh’s quality near the boundary. However, the high-quality and automatic fundamental sheets insertion is still a problem. In this paper, a method is proposed to automatically generate fundamental sheets with the support of stream surfaces. By establishing a constrained integer linear system, the types of fundamental sheets to be inserted are determined effectively and optimally. By constructing discrete stream surfaces associated with the relevant geometric entities, the optimized positions of fundamental sheets are automatically determined. The experimental results show that the proposed method can automatically insert high-quality fundamental sheets and effectively improve the elements’ geometric quality of the hex mesh.

References

1.
Blacker
,
T. D.
,
2001
, “
Automated Conformal Hexahedral Meshing Constraints, Challenges and Opportunities
,”
Eng. Comput.
,
17
(
3
), pp.
201
210
. 10.1007/PL00013384
2.
Cook
,
W. A.
, and
Oaks
,
W. R.
,
1982
, “
Mapping Methods for Generating Three-Dimensional Meshes
,”
Comp. Mech. Eng.
,
1
(
1
), pp.
67
72
.
3.
Ruiz-Gironés
,
E.
, and
Sarrate
,
J.
,
2010
, “
Generation of Structured Meshes in Multiply Connected Surfaces Using Submapping
,”
Adv. Eng. Software
,
41
(
2
), pp.
379
387
. 10.1016/j.advengsoft.2009.06.009
4.
Staten
,
M. L.
,
Kerr
,
R. A.
,
Owen
,
S. J.
,
Blacker
,
T. D.
,
Stupazzini
,
M.
, and
Shimada
,
K.
,
2010
, “
Unconstrained Plastering—Hexahedral Mesh Generation via Advancing-Front Geometry Decomposition
,”
Int. J. Numer. Methods Eng.
,
81
(
2
), pp.
135
171
. 10.1002/nme.2679
5.
Tautges
,
T. J.
,
Blacker
,
T.
, and
Mitchell
,
S. A.
,
1996
, “
The Whisker Weaving Algorithm: A Connectivity-Based Method for Constructing all-Hexahedral Finite Element Meshes
,”
Int. J. Numer. Methods Eng.
,
39
(
19
), pp.
3327
3349
. 10.1002/(SICI)1097-0207(19961015)39:19<3327::AID-NME2>3.0.CO;2-H
6.
Schneiders
,
R.
, and
Bunten
,
R.
,
1995
, “
Automatic Generation of Hexahedral Finite Element Meshes
,”
Comput. -Aided Geom. Des.
,
12
(
7
), pp.
693
707
. 10.1016/0167-8396(95)00013-V
7.
Owen
,
S. J.
,
Shih
,
R. M.
, and
Ernst
,
C.
,
2017
, “
A Template-Based Approach for Parallel Hexahedral two-Refinement
,”
Comput.-Aided Des.
,
85
(
SI
), pp.
34
52
. 10.1016/j.cad.2016.09.005
8.
Lu
,
Y.
,
Gadh
,
R.
, and
Tautges
,
T. J.
,
2001
, “
Feature Based Hex Meshing Methodology: Feature Recognition and Volume Decomposition
,”
Comput.-Aided Des.
,
33
(
3
), pp.
221
232
. 10.1016/S0010-4485(00)00122-6
9.
Wu
,
H.
,
Gao
,
S.
,
Wang
,
R.
, and
Chen
,
J.
,
2018
, “
Fuzzy Clustering Based Pseudo-Swept Volume Decomposition for Hexahedral Meshing
,”
Comput.-Aided Des.
,
96
, pp.
42
58
. 10.1016/j.cad.2017.10.001
10.
He
,
Y.
,
Wang
,
H.
,
Fu
,
C.
, and
Qin
,
H.
,
2009
, “
A Divide-and-Conquer Approach for Automatic Polycube map Construction
,”
Comput. Graphics
,
33
(
3
), pp.
369
380
. 10.1016/j.cag.2009.03.024
11.
Huang
,
J.
,
Jiang
,
T.
,
Shi
,
Z.
,
Tong
,
Y.
,
Bao
,
H.
, and
Desbrun
,
M.
,
2014
, “
l1-based Construction of Polycube Maps From Complex Shapes
,”
ACM Trans. Graphics
,
33
(
3
), pp.
25:1
11
. 10.1145/2602141
12.
Nieser
,
M.
,
Reitebuch
,
U.
, and
Polthier
,
K.
,
2011
, “
CubeCover–Parameterization of 3D Volumes
,”
Comput. Graphics Forum
,
30
(
5
), pp.
1397
1406
. 10.1111/j.1467-8659.2011.02014.x
13.
Li
,
Y.
,
Liu
,
Y.
,
Xu
,
W.
,
Wang
,
W.
, and
Guo
,
B.
,
2012
, “
All-Hex Meshing Using Singularity-Restricted Field
,”
ACM Trans. Graphics
,
31
(
6
), pp.
177:1
11
. 10.1145/2366145.2366196
14.
Jiang
,
T.
,
Huang
,
J.
,
Wang
,
Y.
,
Tong
,
Y.
, and
Bao
,
H.
,
2014
, “
Frame Field Singularity Correction for Automatic Hexahedralization
,”
IEEE Trans. Visualization Comput. Graphics
,
20
(
8
), pp.
1189
1199
. 10.1109/TVCG.2013.250
15.
Liu
,
H.
,
Zhang
,
P.
,
Chien
,
E.
,
Solomon
,
J.
, and
Bommes
,
D.
,
2018
, “
Singularity-constrained Octahedral Fields for Hexahedral Meshing
,”
ACM Trans. Graphics
,
37
(
4
), pp.
93:1
17
. 10.1145/3197517.3201344
16.
Blacker
,
T.
,
Mitchell
,
S. A.
,
Tautges
,
T. J.
,
Murdoch
,
P.
, and
Benzley
,
S.
,
1997
, “
Forming and Resolving Wedges in the Spatial Twist Continuum
,”
Eng. Comput.
,
13
(
1
), pp.
35
47
. 10.1007/BF01201859
17.
Hecht
,
F.
,
Kuate
,
R.
, and
Tautges
,
T.
,
2012
, “
Local Transformations of Hexahedral Meshes of Lower Valence
,”
Comput. Geom. Theory Appl.
,
45
(
1
), pp.
62
71
. 10.1016/j.comgeo.2011.07.002
18.
Wang
,
R.
,
Gao
,
S.
,
Zheng
,
Z.
, and
Chen
,
J.
,
2018
, “
Hex Mesh Topological Improvement Based on Frame Field and Sheet Adjustment
,”
Comput.-Aided Des.
,
103
(
SI
), pp.
103
117
. 10.1016/j.cad.2017.11.007
19.
Shepherd
,
J. F.
,
2009
, “
Conforming Hexahedral Mesh Generation via Geometric Capture Methods
,”
Proceedings of the 18th International Meshing Roundtable
,
Salt Lake City, UT
,
Oct. 25–28
, Heidelberg, Springer, pp.
85
102
.
20.
Jain
,
R.
, and
Tautges
,
T. J.
,
2013
, “
PostBL: Post-Mesh Boundary Layer Mesh Generation Tool
,”
Proceedings of the 22nd International Meshing Roundtable
,
Orlando, FL
,
Oct. 13–16
, Cham, Springer, pp.
331
348
.
21.
Ledoux
,
F.
,
Goff
,
L. N.
,
Owen
,
S. J.
,
Staten
,
M. L.
, and
Weill
,
J. C.
,
2012
, “
A Constraint-Based System to Ensure the Preservation of Sharp Geometric Features in Hexahedral Meshes
,”
Proceedings of the 21st International Meshing Roundtable
,
San Jose, CA
,
Oct. 7–10
, Heidelberg, Springer, pp.
315
332
.
22.
Wang
,
R.
,
Shen
,
C.
,
Chen
,
J.
,
Wu
,
H.
, and
Gao
,
S.
,
2017
, “
Sheet Operation Based Block Decomposition of Solid Models for Hex Meshing
,”
Comput.-Aided Des.
,
85
(
SI
), pp.
123
137
. 10.1016/j.cad.2016.07.016
23.
Wang
,
R.
,
Ding
,
M.
,
Wu
,
H.
,
Zheng
,
Z.
, and
Gao
,
S.
,
2020
, “
Optimization Design Method of Complex Sheet Insertion Operation of Hexahedral Mesh
,”
J. Comput.-Aided Des. Comput. Graphics
,
32
(
5
), pp.
846
856
.
24.
Carey
,
G. F.
,
2002
, “
Hexing the tet
,”
Commun. Numer. Meth. Eng.
,
18
(
3
), pp.
223
227
. 10.1002/cnm.485
25.
Chen
,
J.
,
Gao
,
S.
,
Wang
,
R.
, and
Wu
,
H.
,
2016
, “
An Approach to Achieving Optimized Complex Sheet Inflation Under Constraints
,”
Comput. Graphics
,
59
(
SI
), pp.
39
56
. 10.1016/j.cag.2016.05.001
You do not currently have access to this content.