Abstract

We present a physics-informed neural network modeling approach for missing physics estimation in cumulative damage models. This hybrid approach is designed to merge physics-informed and data-driven layers within deep neural networks. The result is a cumulative damage model in which physics-informed layers are used to model relatively well understood phenomena and data-driven layers account for hard-to-model physics. A numerical experiment is used to present the main features of the proposed framework. The test problem consists of predicting corrosion-fatigue of an Al 2024-T3 alloy used on panels of aircraft wings. Besides cyclic loading, panels are also subjected to saline corrosion. In this case, physics-informed layers implement the well-known Walker model for crack propagation, while data-driven layers are trained to compensate the bias in damage accumulation due to the corrosion effects. The physics-informed neural network is trained using full observation of inputs (far-field loads, stress ratio, and a corrosivity index defined per airport) and very limited observation of outputs (crack length at inspection for only a small portion of the fleet). Results show that the physics-informed neural network is able to learn how to compensate the missing physics of corrosion in the original fatigue model. Predictions from the hybrid model can be used in fleet management, for example, to prioritize inspection across the fleet or forecast ahead of time the number of planes with damage above a threshold.

References

1.
Lee
,
J.
,
Wu
,
F.
,
Zhao
,
W.
,
Ghaffari
,
M.
,
Liao
,
L.
, and
Siegel
,
D.
,
2014
, “
Prognostics and Health Management Design for Rotary Machinery Systems—Reviews, Methodology and Applications
,”
Mech. Syst. Signal Process.
,
42
(
1–2
), pp.
314
334
. 10.1016/j.ymssp.2013.06.004
2.
Bogdanoff
,
J. L.
, and
Kozin
,
F.
,
1985
,
Probabilistic Models of Cumulative Damage
,
John Wiley & Sons
,
New York
.
3.
Johnson
,
W.
, and
Hillberry
,
B.
,
2004
,
Probabilistic Aspects of Life Prediction
,
ASTM International
,
West Conshohocken, PA
.
4.
Peng
,
T.
,
He
,
J.
,
Xiang
,
Y.
,
Liu
,
Y.
,
Saxena
,
A.
,
Celaya
,
J.
, and
Goebel
,
K.
,
2015
, “
Probabilistic Fatigue Damage Prognosis of Lap Joint Using Bayesian Updating
,”
J. Intell. Mater. Syst. Struct.
,
26
(
8
), pp.
965
979
. 10.1177/1045389X14538328
5.
Li
,
C.
,
Mahadevan
,
S.
,
Ling
,
Y.
,
Choze
,
S.
, and
Wang
,
L.
,
2017
, “
Dynamic Bayesian Network for Aircraft Wing Health Monitoring Digital Twin
,”
AIAA J.
,
55
(
3
), pp.
930
941
. 10.2514/1.J055201
6.
Corbetta
,
M.
,
Sbarufatti
,
C.
,
Giglio
,
M.
,
Saxena
,
A.
, and
Goebel
,
K.
,
2018
, “
A Bayesian Framework for Fatigue Life Prediction of Composite Laminates Under Co-Existing Matrix Cracks and Delamination
,”
Compos. Struct.
,
187
(
1
), pp.
58
70
. 10.1016/j.compstruct.2017.12.035
7.
Hamadache
,
M.
,
Jung
,
J. H.
,
Park
,
J.
, and
Youn
,
B. D.
,
2019
, “
A Comprehensive Review of Artificial Intelligence-Based Approaches for Rolling Element Bearing PHM: Shallow and Deep Learning
,”
JMST Adv.
,
1
, pp.
125
151
. 10.1007/s42791-019-0016-y
8.
Chiu
,
M.-C.
,
Tsai
,
C.-D.
, and
Li
,
T.-L.
,
2020
, “
An Integrative Machine Learning Method to Improve Fault Detection and Productivity Performance in a Cyber-Physical System
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
),
021009
. 10.1115/1.4045663
9.
Xu
,
X.
,
Wu
,
Q.
,
Li
,
X.
, and
Huang
,
B.
,
2020
, “
Dilated Convolution Neural Network for Remaining Useful Life Prediction
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021004
. 10.1115/1.4045293
10.
Tse
,
P. W.
, and
Atherton
,
D. P.
,
1999
, “
Prediction of Machine Deterioration Using Vibration Based Fault Trends and Recurrent Neural Networks
,”
ASME J. Vib. Acoust.
,
121
(
3
), pp.
355
362
. 10.1115/1.2893988
11.
Samanta
,
B.
, and
Nataraj
,
C.
,
2009
, “
Prognostics of Machine Condition Using Energy Based Monitoring Index and Computational Intelligence
,”
ASME J. Comput. Inf. Sci. Eng.
,
9
(
4
), p.
044502
. 10.1115/1.3249574
12.
Liu
,
J.
,
Saxena
,
A.
,
Goebel
,
K.
,
Saha
,
B.
, and
Wang
,
W.
,
2010
, “
An Adaptive Recurrent Neural Network for Remaining Useful Life Prediction of Lithium-Ion Batteries
,”
2010 Annual Conference of the PHM Society
,
Portland, OR
,
Oct. 13–16
, PHM Society.
13.
Gugulothu
,
N.
,
TV
,
V.
,
Malhotra
,
P.
,
Vig
,
L.
,
Agarwal
,
P.
, and
Shroff
,
G.
,
2018
, “
Predicting Remaining Useful Life Using Time Series Embeddings Based on Recurrent Neural Networks
,”
Int. J. Prognostics Health Manage.
,
9
(
1
), pp.
1
13
.
14.
Su
,
Y.
,
Tao
,
F.
,
Jin
,
J.
,
Wang
,
T.
,
Wang
,
Q.
, and
Wang
,
L.
,
2020
, “
Failure Prognosis of Complex Equipment With Multistream Deep Recurrent Neural Network
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021007
. 10.1115/1.4045445
15.
Al-Dulaimi
,
A.
,
Zabihi
,
S.
,
Asif
,
A.
, and
Mohammed
,
A.
,
2020
, “
NBLSTM: Noisy and Hybrid Convolutional Neural Network and BLSTM-Based Deep Architecture for Remaining Useful Life Estimation
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
2
), p.
021012
. 10.1115/1.4045491
16.
Baraldi
,
P.
,
Cadini
,
F.
,
Mangili
,
F.
, and
Zio
,
E.
,
2013
, “
Model-Based and Data-Driven Prognostics Under Different Available Information
,”
Probabilistic Eng. Mech.
,
32
, pp.
66
79
. 10.1016/j.probengmech.2013.01.003
17.
An
,
D.
,
Kim
,
N. H.
, and
Choi
,
J. H.
,
2015
, “
Practical Options for Selecting Data-Driven Or Physics-Based Prognostics Algorithms With Reviews
,”
Reliab. Eng. Syst. Saf.
,
133
, pp.
223
236
. 10.1016/j.ress.2014.09.014
18.
Eker
,
O. F.
,
Camci
,
F.
, and
Jennions
,
I. K.
,
2019
, “
A New Hybrid Prognostic Methodology
,”
Int. J. Prognostics Health Manage.
,
10
(
2
), pp.
1
13
.
19.
Chao
,
M. A.
,
Kulkarni
,
C.
,
Goebel
,
K.
, and
Fink
,
O.
,
2019
, “
Hybrid Deep Fault Detection and Isolation: Combining Deep Neural Networks and System Performance Models
,”
Int. J. Prognostics Health Manage.
,
10
Sp11
(Special Issue on Deep Learning and Emerging Analytics), pp.
1
19
.
20.
Nascimento
,
R. G.
, and
Viana
,
F. A. C.
,
2019
, “
Fleet Prognosis With Physics-Informed Recurrent Neural Networks
,” arXiv:1901.05512.
21.
Nascimento
,
R. G.
, and
Viana
,
F. A. C.
,
2019
, “
Fleet Prognosis With Physics-Informed Recurrent Neural Networks
,”
12th International Workshop on Structural Health Monitoring
,
Stanford, CA
,
Sept. 10–12
, pp.
1740
1747
.
22.
Chen
,
G. S.
,
Gao
,
M.
,
Harlow
,
D. G.
, and
Wei
,
R. P.
,
1994
,
Corrosion and Corrosion Fatigue of Airframe Aluminum Alloys
,
Lehigh University
,
Bethlehem, PA
, ch. N95-14465.
23.
Wang
,
Q.
,
Pidaparti
,
R. M.
, and
Palakal
,
M. J.
,
2001
, “
Comparative Study of Corrosion-Fatigue in Aircraft Materials
,”
AIAA J.
,
39
(
2
), pp.
325
330
. 10.2514/2.1308
24.
DuQuesnay
,
D. L.
,
Underhill
,
P. R.
, and
Britt
,
H. J.
,
2003
, “
Fatigue Crack Growth From Corrosion Damage in 7075-T6511 Aluminium Alloy Under Aircraft Loading
,”
Int. J. Fatigue
,
25
(
5
), pp.
371
377
. 10.1016/S0142-1123(02)00168-8
25.
Lindley
,
T. C.
,
McIntyre
,
P.
, and
Trant
,
P. J.
,
1982
, “
Fatigue Crack Initiation at Corrosion Pits
,”
Mat. Technol.
,
9
(
1
), pp.
135
142
.
26.
Kondo
,
Y.
,
1989
, “
Prediction of Fatigue Crack Initiation Life Based on Pit Growth
,”
Corrosion
,
45
(
1
), pp.
7
11
. 10.5006/1.3577891
27.
Chen
,
G. S.
,
Wan
,
K. C.
,
Gao
,
M.
,
Wei
,
R. P.
, and
Flournoy
,
T. H.
,
1996
, “
Transition From Pitting to Fatigue Crack Growth—Modeling of Corrosion Fatigue Crack Nucleation in a 2024-T3 Aluminum Alloy
,”
Mater. Sci. Eng.
,
219
(
1–2
), pp.
126
132
. 10.1016/S0921-5093(96)10414-7
28.
Larossa
,
N. O.
,
Akid
,
R.
, and
Ainsworth
,
R. A.
,
2018
, “
Corrosion-Fatigue: A Review of Damage Tolerance Models
,”
Int. Mater. Rev.
,
63
(
5
), pp.
283
308
. 10.1080/09506608.2017.1375644
29.
Lee
,
H.
, and
Kang
,
I. S.
,
1990
, “
Neural Algorithm for Solving Differential Equations
,”
J. Comput. Phys.
,
91
(
1
), pp.
110
131
. 10.1016/0021-9991(90)90007-N
30.
Meade
,
A. J.
, and
Fernandez
,
A. A.
,
1994
, “
Solution of Nonlinear Ordinary Differential Equations by Feedforward Neural Networks
,”
Math. Comput. Modell.
,
20
(
9
), pp.
19
44
. 10.1016/0895-7177(94)00160-X
31.
Takeuchi
,
J.
, and
Kosugi
,
Y.
,
1994
, “
Neural Network Representation of Finite Element Method
,”
Neural Netw.
,
7
(
2
), pp.
389
395
. 10.1016/0893-6080(94)90031-0
32.
Wang
,
Y.-J.
, and
Lin
,
C.-T.
,
1998
, “
Runge-Kutta Neural Network for Identification of Dynamical Systems in High Accuracy
,”
IEEE Trans. Neural Netw.
,
9
(
2
), pp.
294
307
. 10.1109/72.661124
33.
Singh
,
A. P.
,
Medida
,
S.
, and
Duraisamy
,
K.
,
2017
, “
Machine-Learning-Augmented Predictive Modeling of Turbulent Separated Flows Over Airfoils
,”
AIAA J.
,
55
(
7
), pp.
2215
2227
. 10.2514/1.J055595
34.
Raissi
,
M.
, and
Karniadakis
,
G. E.
,
2018
, “
Hidden Physics Models: Machine Learning of Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
357
(
15
), pp.
125
141
. 10.1016/j.jcp.2017.11.039
35.
Chen
,
T. Q.
,
Rubanova
,
Y.
,
Bettencourt
,
J.
, and
Duvenaud
,
D. K.
,
2018
,
Neural Ordinary Differential Equations
,
S.
Bengio
,
H.
Wallach
,
H.
Larochelle
,
K.
Grauman
,
N.
Cesa-Bianchi
, and
R.
Garnett
, eds.,
Curran Associates, Inc.
,
Red Hook, NY
, pp.
6572
6583
.
36.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2018
, “
Numerical Gaussian Processes for Time-Dependent and Nonlinear Partial Differential Equations
,”
SIAM J. Sci. Comput.
,
40
(
1
), pp.
A172
A198
. 10.1137/17M1120762
37.
Kani
,
J. N.
, and
Elsheikh
,
A. H.
,
2018
, “
Reduced-Order Modeling of Subsurface Multi-Phase Flow Models Using Deep Residual Recurrent Neural Networks
,”
Transp. Porous Media
,
126
(
3
), pp.
713
741
. 10.1007/s11242-018-1170-7
38.
Raissi
,
M.
,
2018
, “
Deep Hidden Physics Models: Deep Learning of Nonlinear Partial Differential Equations
,”
J. Mach. Learn. Res.
,
19
(
25
), pp.
1
24
.
39.
Yu
,
Y.
,
Yao
,
H.
, and
Liu
,
Y.
,
2018
, “
Physics-Based Learning for Aircraft Dynamics Simulation
,”
2018 Annual Conference of the PHM Society
,
Philadelphia, PA
,
Sept. 24–28
, PHM Society.
40.
Fatemi
,
A.
, and
Yang
,
L.
,
1998
, “
Cumulative Fatigue Damage and Life Prediction Theories: a Survey of the State of the Art for Homogeneous Materials
,”
Int. J. Fatigue
,
20
(
1
), pp.
9
34
. 10.1016/S0142-1123(97)00081-9
41.
Frangopol
,
D. M.
,
Kallen
,
M.-J.
, and
van Noortwijk
,
J. M.
,
2004
, “
Probabilistic Models for Life-Cycle Performance of Deteriorating Structures: Review and Future Directions
,”
Prog. Struct. Eng. Mater.
,
6
(
4
), pp.
197
212
. 10.1002/pse.180
42.
Nakagawa
,
T.
, and
Kijima
,
M.
,
1989
, “
Replacement Policies for a Cumulative Damage Model With Minimal Repair at Failure
,”
IEEE Trans. Reliab.
,
38
(
5
), pp.
581
584
. 10.1109/24.46485
43.
Paris
,
P.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
(
4
), pp.
528
533
. 10.1115/1.3656900
44.
MMPDS Collaborators
,
2017
,
MMPDS - 12: Metallic Materials Properties Development and Stadardization
.
45.
Dowling
,
N. E.
,
2012
,
Mechanical Behavior of Materials: Engineering Methods for Deformation, Fracture, and Fatigue
,
Pearson
,
New York, NY
.
46.
Goswami
,
T. K.
, and
Hoeppner
,
D. W.
,
1995
, “
Pitting Corrosion Fatigue of Structural Materials
,”
Structural Integrity in Aging Aircraft
,
ASME
,
New York
, p.
47
.
47.
Shi
,
P.
, and
Mahadevan
,
S.
,
2001
, “
Damage Tolerance Approach for Probabilistic Pitting Corrosion Fatigue Life Prediction
,”
Eng. Fract. Mech.
,
68
(
13
), pp.
1493
1507
. 10.1016/S0013-7944(01)00041-8
48.
Menan
,
F.
, and
Henaft
,
G.
,
2010
, “
Synergistic Action of Fatigue and Corrosion During Crack Growth in the 2024 Aluminum Alloy
,”
Procedia Eng.
,
2
(
1
), pp.
1441
1450
. 10.1016/j.proeng.2010.03.156
49.
Goodfellow
,
I.
,
Bengio
,
Y.
, and
Courville
,
A.
,
2016
,
Deep Learning
,
MIT Press
,
Cambridge, MA
.
50.
Hochreiter
,
S.
, and
Schmidhuber
,
J.
,
1997
, “
Long Short-Term Memory
,”
Neural Comput.
,
9
(
8
), pp.
1735
1780
. 10.1162/neco.1997.9.8.1735
51.
Chung
,
J.
,
Gulcehre
,
C.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2015
, “
Gated Feedback Recurrent Neural Networks
,”
32nd International Conference on Machine Learning
,
Lille, France
,
July 6–11
, pp.
2067
2075
.
52.
Connor
,
J. T.
,
Martin
,
R. D.
, and
Atlas
,
L. E.
,
1994
, “
Recurrent Neural Networks and Robust Time Series Prediction
,”
IEEE Trans. Neural Netw.
,
5
(
2
), pp.
240
254
. 10.1109/72.279188
53.
Sutskever
,
I.
,
Martens
,
J.
, and
Hinton
,
G.
,
2011
, “
Generating Text With Recurrent Neural Networks
,”
28th International Conference on Machine Learning
,
Bellevue, WA
,
June 28
.
54.
Graves
,
A.
,
Mohamed
,
A.
, and
Hinton
,
G.
,
2013
, “
Speech Recognition With Deep Recurrent Neural Networks
,”
38th IEEE International Conference on Acoustics, Speech and Signal Processing
,
Vancouver, Canada
,
May 26–31
, pp.
6645
6649
.
55.
Sak
,
H.
,
Senior
,
A.
, and
Beaufays
,
F.
,
2014
, “
Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling
,”
Fifteenth Annual Conference of the International Speech Communication Association
,
Singapore
,
Sept. 14–18
.
56.
Chauhan
,
S.
, and
Vig
,
L.
,
2015
, “
Anomaly Detection in ECG Time Signals Via Deep Long Short-Term Memory Networks
,”
IEEE International Conference on Data Science and Advanced Analytics (DSAA)
,
Paris, France
,
Oct. 19–21
, pp.
1
7
.
57.
Aldrin
,
J. C.
,
Knopp
,
J. S.
,
Lindgren
,
E. A.
, and
Jata
,
K. V.
,
2009
, “
Model-Assisted Probability of Detection Evaluation for Eddy Current Inspection of Fastener Sites
,”
AIP Conference Proceedings
,
Chicago, IL
,
Mar. 3
, Vol.
1096
, AIP, pp.
1784
1791
.
58.
Drinkwater
,
B. W.
, and
Wilcox
,
P. D.
,
2006
, “
Ultrasonic Arrays for Non-Destructive Evaluation: A Review
,”
NDT & E Int.
,
39
(
7
), pp.
525
541
. 10.1016/j.ndteint.2006.03.006
59.
Hoye
,
M. V.
,
1986
, “
Fluorescent Penetrant Crack Detection
,” U.S. Patent No. US4621193A,
Nov
.
60.
Roach
,
D.
,
2009
, “
Real Time Crack Detection Using Mountable Comparative Vacuum Monitoring Sensors
,”
Smart Struct. Syst.
,
5
(
4
), pp.
317
328
. 10.12989/sss.2009.5.4.317
61.
Hill
,
K. O.
, and
Meltz
,
G.
,
1997
, “
Fiber Bragg Grating Technology Fundamentals and Overview
,”
J. Lightwave Technol.
,
15
(
8
), pp.
1263
1276
. 10.1109/50.618320
62.
Jonge
,
J. B. D.
,
Schutz
,
D.
,
Lowak
,
H.
, and
Schijve
,
J.
,
1973
, “
A Standardized Load Sequence for Flight Simulation Tests on Transport Aircraft Wing Structures
,” NLR TR 73029U, Report from National Aerospace Laboratory.
63.
Goodwin
,
P.
, and
Lawton
,
R.
,
1999
, “
On the Asymmetry of the Symmetric MAPE
,”
Int. J. Forecast.
,
15
(
4
), pp.
405
408
. 10.1016/S0169-2070(99)00007-2
64.
Viana
,
F. A. C.
,
Nascimento
,
R. G.
,
Yucesan
,
Y.
, and
Dourado
,
A.
,
2019
,
Physics-Informed Neural Networks Package
, https://github.com/PML-UCF/pinn˙wind˙bearing,
August
.
65.
Dourado
,
A.
, and
Viana
,
F. A. C.
,
2019
,
Python Scripts for Physics-Informed Neural Networks for Corrosion-Fatigue Prognosis
, v0.0.1, https://github.com/PML-UCF/pinn˙corrosion˙fatigue,
August
.
66.
Kohavi
,
R.
,
1995
, “
A Study of Cross-Validation and Bootstrap for Accuracy Estimation and Model Selection
,”
International Joint Conference on Articial Intelligence
,
Montreal, Canada
,
Aug. 20–25
,
Morgan Kaufmann Publishers Inc
., pp.
1137
1143
.
You do not currently have access to this content.