Abstract

Recently, physics informed neural networks (PINNs) have produced excellent results in solving a series of linear and nonlinear partial differential equations (PDEs) without using any prior data. However, due to slow training speed, PINNs are not directly competitive with existing numerical methods. To overcome this issue, the authors developed Physics Informed Extreme Learning Machine (PIELM), a rapid version of PINN, and tested it on a range of linear PDEs of first and second order. In this paper, we evaluate the effectiveness of PIELM on higher-order PDEs with practical engineering applications. Specifically, we demonstrate the efficacy of PIELM to the biharmonic equation. Biharmonic equations have numerous applications in solid and fluid mechanics, but they are hard to solve due to the presence of fourth-order derivative terms, especially in complicated geometries. Our numerical experiments show that PIELM is much faster than the original PINN on both regular and irregular domains. On irregular domains, it also offers an excellent alternative to traditional methods due to its meshless nature.

References

References
1.
Weinan
,
E.
, and
Liu
,
J.-G.
,
1996
, “
Vorticity Boundary Condition and Related Issues for Finite Difference Schemes
,”
J. Comput. Phys.
,
124
(
2
), pp.
368
382
. 10.1006/jcph.1996.0066
2.
Kupferman
,
R.
,
2001
, “
A Central-Difference Scheme for a Pure Stream Function Formulation of Incompressible Viscous Flow
,”
SIAM J. Sci. Comput.
,
23
(
1
), pp.
1
18
. 10.1137/S1064827500373395
3.
Harper
,
J.
, and
Wake
,
G.
,
1983
, “
Stokes Flow Between Parallel Plates Due to a Trausversely Moving End Wall
,”
IMA J. Appl. Math.
,
30
(
2
), pp.
141
149
. 10.1093/imamat/30.2.141
4.
Gaskell
,
P.
,
Savage
,
M.
,
Summers
,
J.
, and
Thompson
,
H.
,
1995
, “
Modelling and Analysis of Meniscus Roll Coating
,”
J. Fluid Mech.
,
298
, pp.
113
137
. 10.1017/S0022112095003247
5.
Canedo
,
E. L.
, and
Denson
,
C. D.
,
1989
, “
Flow in Driven Cavities With a Free Surface
,”
AIChE J.
,
35
(
1
), pp.
129
138
. 10.1002/aic.690350114
6.
Gaskell
,
P.
,
Savage
,
M.
,
Summers
,
J.
, and
Thompson
,
H.
,
1998
, “
Stokes Flow in Closed, Rectangular Domains
,”
Appl. Math. Model.
,
22
(
9
), pp.
727
743
. 10.1016/S0307-904X(98)10060-4
7.
Timoshenko
,
S.
, and
Goodier
,
J.
,
1970
,
Theory of Elasticity
,
Mcgraw-Hill Company Inc.
,
New York
.
8.
Berg
,
J.
, and
Nyström
,
K.
,
2018
, “
A Unified Deep Artificial Neural Network Approach to Partial Differential Equations in Complex Geometries
,”
Neurocomputing
,
317
, pp.
28
41
. 10.1016/j.neucom.2018.06.056
9.
Raissi
,
M.
,
Perdikaris
,
P.
, and
Karniadakis
,
G. E.
,
2019
, “
Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations
,”
J. Comput. Phys.
,
378
, pp.
686
707
. 10.1016/j.jcp.2018.10.045
10.
Lagaris
,
I. E.
,
Likas
,
A.
, and
Fotiadis
,
D. I.
,
1998
, “
Artificial Neural Networks for Solving Ordinary and Partial Differential Equations
,”
IEEE Trans. Neural Netw.
,
9
(
5
), pp.
987
1000
. 10.1109/72.712178
11.
Sirignano
,
J.
, and
Spiliopoulos
,
K.
,
2018
, “
Dgm: A Deep Learning Algorithm for Solving Partial Differential Equations
,”
J. Comput. Phys.
,
375
, pp.
1339
1364
. 10.1016/j.jcp.2018.08.029
12.
Sun
,
L.
,
Gao
,
H.
,
Pan
,
S.
, and
Wang
,
J.-X.
,
2019
, “
Surrogate Modeling for Fluid Flows Based on Physics-Constrained Deep Learning Without Simulation Data
,”
arXiv:1906.02382
.
13.
Nabian
,
M. A.
, and
Meidani
,
H.
,
2020
, “
Physics-Driven Regularization of Deep Neural Networks for Enhanced Engineering Design and Analysis
,”
ASME J. Comput. Inf. Sci. Eng.
,
20
(
1
), p.
011006
. 10.1115/1.4044507
14.
Dwivedi
,
V.
, and
Srinivasan
,
B.
,
2019
, “
Physics Informed Extreme Learning Machine (PIELM)—A Rapid Method for the Numerical Solution of Partial Differential Equations
,”
Neurocomputing
. 10.1016/j.neucom.2019.12.099
15.
Huang
,
G.-B.
,
Zhu
,
Q.-Y.
, and
Siew
,
C.-K.
,
2006
, “
Extreme Learning Machine: Theory and Applications
,”
Neurocomputing
,
70
(
1–3
), pp.
489
501
. 10.1016/j.neucom.2005.12.126
16.
Huang
,
G.-B.
,
Chen
,
L.
, and
Siew
,
C. K.
,
2006
, “
Universal Approximation Using Incremental Constructive Feedforward Networks With Random Hidden Nodes
,”
IEEE Trans. Neural Netw.
,
17
(
4
), pp.
879
892
. 10.1109/TNN.2006.875977
17.
Balasundaram
,
S.
, and
Kapil
,
G.
,
2011
, “
Application of Error Minimized Extreme Learning Machine for Simultaneous Learning of a Function and Its Derivatives
,”
Neurocomputing
,
74
(
16
), pp.
2511
2519
. 10.1016/j.neucom.2010.12.033
18.
Yang
,
Y.
,
Hou
,
M.
, and
Luo
,
J.
,
2018
, “
A Novel Improved Extreme Learning Machine Algorithm in Solving Ordinary Differential Equations by Legendre Neural Network Methods
,”
Adv. Differ. Equ.
,
2018
(
1
), p.
469
. 10.1186/s13662-018-1927-x
19.
Sun
,
H.
,
Hou
,
M.
,
Yang
,
Y.
,
Zhang
,
T.
,
Weng
,
F.
, and
Han
,
F.
,
2019
, “
Solving Partial Differential Equation Based on Bernstein Neural Network and Extreme Learning Machine Algorithm
,”
Neural Process. Lett.
,
50
, pp.
1
20
. 10.1007/s11063-018-9911-8
20.
Vlahinos
,
A.
and
Scully
,
S. J.
,
2019
, “
Protection Device That Promotes Air Flow for Heat Transfer
,” US Patent Application 16/297,096.
21.
Rao
,
S. S.
,
2017
,
The Finite Element Method in Engineering
,
Butterworth-Heinemann
,
Oxford, UK
.
22.
LeVeque
,
R. J.
,
2007
,
Finite Difference Methods for Ordinary and Partial Differential Equations: Steady-State and Time-Dependent Problems
, Vol.
98
,
SIAM
,
Philadelphia
.
23.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education
,
Essex, UK
.
24.
Baydin
,
A. G.
,
Pearlmutter
,
B. A.
,
Radul
,
A. A.
, and
Siskind
,
J. M.
,
2017
, “
Automatic Differentiation in Machine Learning: A Survey
,”
J. Mach. Learn. Res.
,
18
(
1
), pp.
5595
5637
.
25.
Adibi
,
H.
, and
Es’haghi
,
J.
,
2007
, “
Numerical Solution for Biharmonic Equation Using Multilevel Radial Basis Functions and Domain Decomposition Methods
,”
Appl. Math. Comput.
,
186
(
1
), pp.
246
255
.
26.
Chen
,
G.
,
Li
,
Z.
, and
Lin
,
P.
,
2008
, “
A Fast Finite Difference Method for Biharmonic Equations on Irregular Domains and Its Application to an Incompressible Stokes Flow
,”
Adv. Comput. Math.
,
29
(
2
), pp.
113
133
. 10.1007/s10444-007-9043-6
27.
Pozrikidis
,
C.
,
2011
,
Introduction to Theoretical and Computational Fluid Dynamics
,
Oxford University Press
,
Oxford, UK
.
28.
Lu
,
L.
,
Meng
,
X.
,
Mao
,
Z.
, and
Karniadakis
,
G. E.
,
2019
, “
Deepxde: A Deep Learning Library for Solving Differential Equations
,”
arXiv:1907.04502
.
You do not currently have access to this content.