Abstract

The modern engineering technologies of computer-aided design (CAD), computer-aided engineering (CAE), and computer-aided manufacturing (CAM) are ubiquitous in engineering practice. They are focused on creating, analyzing, and fabricating engineering artifacts represented as geometric models. Historically, these technologies developed independently, with different geometric representations that are customized to the needs of the technology. As a result, the combined use of these technologies has led to differences in data structures, file formats, and user knowledge and practice, requiring translation of representations between systems to support interoperability. Complicating this situation is the approximate nature of modeling operations in CAD systems, which can result in gaps at the boundary curves between mating trimmed surfaces of a model. The research presented here is aimed at removing the gaps between trimmed surfaces, resulting in a “watertight” model that is suitable for use directly by downstream applications. A three-step algorithm is presented that includes analysis of the parametric space of the trimming curves, reparameterization to create a global parameter space, and reconstruction of the intersecting surfaces to ensure continuity at the trimming curve.

References

References
1.
Baumgart
,
B. G.
,
1972
,
Winged Edge Polyhedron Representation
,
Stanford University
,
Stanford, CA, USA
.
2.
Cohen
,
E. A.
,
Riesenfeld
,
R. F.
, and
Elber
,
G. A.
,
2001
,
Geometric Modeling With Splines: An Introduction
,
A. K. Peters, Ltd.
,
Natick, MA
.
3.
Piegl
,
L.
, and
Tiller
,
W.
,
1977
,
The NURBS Book
, 2 ed.,
Springer-Verlag
,
New York, NY
.
4.
Sederberg
,
T.
,
Anderson
,
D.
, and
Goldman
,
R.
,
1984
, “
Implicit Representation of Parametric Curves and Surfaces
,”
Comput. Vis. Graphics Image Process.
,
28
(
1
), pp.
72
84
. 10.1016/0734-189X(84)90140-3
5.
Sederberg
,
T. W.
,
Finnigan
,
G. T.
,
Li
,
X.
,
Lin
,
H.
, and
Ipson
,
H.
,
2008
, “
Watertight Trimmed NURBS
,”
ACM Trans. Graphics
,
27
(
3
), pp.
79:1
79:8
. 10.1145/1360612.1360678
6.
Hardwick
,
M.
,
Clay
,
R.
,
Boggs
,
P.
,
Walsh
,
E.
,
Larzelere
,
A.
, and
Altshuler
,
A.
,
2005
, “
DART System Analysis
,”
Technical Report
,
Sandia National Laboratories
,
Albequerque, NM and Livermore, CA
.
7.
Marussig
,
B.
, and
Hughes
,
T. J. R.
,
2018
, “
A Review of Trimming in Isogeometric Analysis: Challenges, Data Exchange and Simulation Aspects
,”
Arch. Comput. Methods Eng.
,
18
(
5
), pp.
463
481
. 10.1007/s11831-017-9220-9
8.
Sheng
,
X.
, and
Hirsch
,
B. E.
,
1992
, “
Triangulation of Trimmed Surfaces in Parametric Space
,”
Comput.-Aided Des.
,
24
(
8
), pp.
437
444
. 10.1016/0010-4485(92)90011-X
9.
Cripps
,
R. J.
, and
Parwana
,
S. S.
,
2011
, “
A Robust Efficient Tracing Scheme for Triangulating Trimmed Parametric Surfaces
,”
Comput.-Aided Des.
,
43
(
1
), pp.
12
20
. 10.1016/j.cad.2010.08.009
10.
Rossignac
,
J.
,
Fudos
,
I.
, and
Vasilakis
,
A.
,
2013
, “
Direct Rendering of Boolean Combinations of Self-Trimmed Surfaces
,”
Comput.-Aided Des.
,
45
(
2
), pp.
288
300
. 10.1016/j.cad.2012.10.012
11.
Pavanaskar
,
S.
, and
McMains
,
S.
,
2013
, “
Filling Trim Cracks on GPU-Rendered Solid Models
,”
Comput.-Aided Des.
,
45
(
2
), pp.
535
539
. 10.1016/j.cad.2012.10.037
12.
Wu
,
R.
, and
Peters
,
J.
,
2015
, “
Correct Resolution Rendering of Trimmed Spline Surfaces
,”
Comput.-Aided Des.
,
58
, pp.
123
131
. 10.1016/j.cad.2014.08.012
13.
Litke
,
N.
,
Levin
,
A.
, and
Schröder
,
P.
,
2001
, “
Trimming for Subdivision Surfaces
,”
Comput. Aided Geomet. Des.
,
25
(
4
), pp.
1059
1127
.
14.
Shena
,
J.
,
Kosinka
,
J.
,
Sabin
,
M.
, and
Dodgson
,
N.
,
2014
, “
Conversion of Trimmed NURBS Surfaces to Catmull–Clark Subdivision Surfaces
,”
Comput. Aided Geom. Des.
,
31
(
7–8
), pp.
486
498
. 10.1016/j.cagd.2014.06.004
15.
Patrikalakis
,
N. M.
, and
Maekawa
,
T.
,
2002
, “Intersection Problems,”
Handbook of Computer Aided Geometric Design
,
Farin
,
G.
,
Hoschek
,
J.
, and
Kim
,
M.-S.
, eds.,
Elsevier Science
,
Amsterdam, The Netherlands
, Chap.
25
, pp.
623
650
.
16.
Seidel
,
R.
,
1998
, “
The Nature and Meaning of Perturbations in Geometric Computing
,”
Discrete Comput. Geom.
,
19
(
1
), pp.
1
17
. 10.1007/PL00009330
17.
Hu
,
Y.-P.
, and
Sun
,
T.-C.
,
1997
, “
Moving a B-Spline Surface to a Curve–A Trimmed Surface Matching Algorithm
,”
Comput.-Aided Des.
,
29
(
6
), pp.
449
455
. 10.1016/S0010-4485(96)00086-3
18.
Song
,
X. W.
,
Sederberg
,
T. W.
,
Zheng
,
J. M.
,
Farouki
,
R. T.
, and
Hass
,
J.
,
2004
, “
Linear Perturbation Methods for Topologically Consistent Representations of Free-Form Surface Intersections
,”
Comput. Aided Geom. Des.
,
21
(
3
), pp.
303
319
. 10.1016/j.cagd.2003.11.004
19.
Farouki
,
R. T.
,
Han
,
C. Y.
,
Hass
,
J.
, and
Sederberg
,
T. W.
,
2004
, “
Topologically Consistent Trimmed Surface Approximations Based on Triangular Patches
,”
Comput. Aided Geom. Des.
,
21
(
5
), pp.
459
478
. 10.1016/j.cagd.2004.03.002
20.
Haas
,
J.
,
Farouki
,
R. T.
,
Han
,
C. Y.
,
Song
,
X.
, and
Sederberg
,
T. W.
,
2007
, “
Guaranteed Consistency of Surface Intersections and Trimmed Surfaces Using a Coupled Topology Resolution and Domain Decomposition Scheme
,”
Adv. Comput. Math.
,
27
(
1
), pp.
1
26
. 10.1007/s10444-005-7539-5
21.
Sederberg
,
T. W.
,
Zheng
,
J.
,
Bakenov
,
A.
, and
Nasri
,
A. H.
,
2003
, “
T-Splines and T-NURCCs
,”
ACM Trans. Graphics
,
22
(
3
), pp.
477
484
. 10.1145/882262.882295
22.
Beer
,
G.
,
Marussig
,
B.
, and
Zechner
,
J.
,
2015
, “
A Simple Approach to the Numerical Simulation with Trimmed CAD Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
285
, pp.
776
790
. 10.1016/j.cma.2014.12.010
23.
Hamann
,
B.
, and
Tsai
,
P.-Y.
,
1996
, “
A Tessellation Algorithm for the Representation of Trimmed NURBS Surfaces with Arbitrary Trimming Curves
,”
Comput.-Aided Des.
,
28
(
6–7
), pp.
461
472
. 10.1016/0010-4485(95)00043-7
24.
Vries-Baayens
,
A. E.
, and
Seebregts
,
C. H.
,
1992
, “Exact Conversion of a Trimmed Nonrational Bézier Surface Into Composite Or Basic Nonrational Bézier Surfaces,”
Topics in Surface Modeling
,
Hagen
,
H.
, ed.,
SIAM
,
Philadelphia, PA
, Chap.
7
, pp.
115
144
.
25.
Randrianarivony
,
M.
,
2009
, “
On Global Continuity of Coons Mappings in Patching CAD Surfaces
,”
Comput.-Aided Des.
,
41
(
11
), pp.
782
791
. 10.1016/j.cad.2009.04.012
26.
Kosinka
,
J.
, and
Cashman
,
T. J.
,
2015
, “
Watertight Conversion of Trimmed CAD Surfaces to Clough–Tocher Splines
,”
Comput. Aided Geom. Des.
,
37
, pp.
25
41
. 10.1016/j.cagd.2015.06.001
27.
Applegarth
,
I.
,
Catley
,
D.
, and
Bradley
,
I.
,
1989
, “Clipping of B-Spline Patches At Surface Curves,”
The Mathematics of Surfaces III
,
Handscomb
,
D. C.
, ed.,
Clarendon Press
,
Oxford, UK
, pp.
229
242
.
28.
Wang
,
X.
,
2001
, “
Geometric Trimming and Curvature Continuous Surface Blending for Aircraft Fuselage and Wing Shapes
,”
MS thesis
,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
29.
Zhang
,
X.
,
2005
, “
Optimal Geometric Trimming of B-Spline Surfaces for Aircraft Design
,” Ph.D. thesis,
Virginia Polytechnic Institute and State University
,
Blacksburg, VA
.
30.
Hettinga
,
G. J.
, and
Kosinka
,
J.
,
2020
, “
Conversion of B-Rep CAD Models Into Globally G1 Triangular Splines
,”
Comput. Aided Geom. Des.
,
77
, p.
101832
. 10.1016/j.cagd.2020.101832
31.
Song
,
Y.
, and
Cohen
,
E.
,
2019
, “
Making Trimmed B-Splines Watertight with a Hybrid Representation
,”
Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
ASME Paper No. DETC2019-97485
.
32.
Hui
,
K. C.
, and
Wu
,
Y.-B.
,
2005
, “
Feature-Based Decomposition of Trimmed Surface
,”
Comput.-Aided Des.
,
37
(
8
), pp.
859
867
. 10.1016/j.cad.2004.09.014
33.
Massarwi
,
F.
,
van Sosin
,
B.
, and
Elber
,
G.
,
2018
, “
Untrimming: Precise Conversion of Trimmed-Surfaces to Tensor-Product Surfaces
,”
Comput. Graphics
,
70
, pp.
80
91
. 10.1016/j.cag.2017.08.009
34.
Urick
,
B.
,
Crawford
,
R. H.
,
Hughes
,
T. J. R.
,
Cohen
,
E.
, and
Riesenfeld
,
R. F.
,
2019
, “
Reconstruction of Gap-Free Intersections for Trimmed Nurbs Surfaces,” Proceedings of the ASME 2019 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
American Society of Mechanical Engineers
,
ASME
Paper No. DETC2019-98372
. 10.1115/detc2019-98372
35.
Lee
,
E. T. Y.
, and
Lucian
,
M. L.
,
1991
, “
Möbius Reparametrizations of Rational B-Splines
,”
Comput. Aided Geom. Des.
,
8
(
3
), pp.
213
215
. 10.1016/0167-8396(91)90004-U
36.
Alt
,
L.
,
1993
, “
Rational Linear Reparametrization of NURBS and the Blossoming Principle
,”
Comput. Aided Geom. Des.
,
10
(
5
), pp.
465
467
. 10.1016/0167-8396(93)90023-V
37.
Tokuyama
,
Y.
, and
Konno
,
K.
,
2001
, “
Reparameterization of Piecewise Rational Bézier Curves and Its Applications
,”
Visual Comput.
,
17
(
6
), pp.
329
336
. 10.1007/s003710100110330
38.
Liu
,
L.
,
Zhang
,
Y. J.
, and
Wei
,
X.
,
2015
, “
Weighted T-Splines With Application in Reparameterizing Trimmed NURBS Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
295
, pp.
108
126
. 10.1016/j.cma.2015.06.020
39.
Li
,
K.
, and
Qian
,
X.
,
2015
, “
Direct Diffeomorphic Reparameterization for Correspondence Optimization in Statistical Shape Modeling
,”
Comput.-Aided Des.
,
64
, pp.
33
54
. 10.1016/j.cad.2015.02.006
40.
Hashemian
,
A.
,
Hosseinib
,
S. F.
, and
Nabavi
,
S. N.
,
2017
, “
Kinematically Smoothing Trajectories by NURBS Reparameterization – An Innovative Approach
,”
Advanced Rob.
,
31
(
23–24
), pp.
1296
1312
. 10.1080/01691864.2017.1396923
41.
Farin
,
G.
,
2002
,
Curves and Surfaces for CAGD: A Practical Guide
, 5 ed.,
Academic Press
,
San Diego, CA, USA
.
42.
Wang
,
C. C. L.
, and
Tang
,
K.
,
2004
, “
Algebraic Grid Generation on Trimmed Parametric Surface Using Non-Self-Overlapping Planar Coons Patch
,”
Int. J. Numer. Methods Eng.
,
60
(
7
), pp.
1259
1286
. 10.1002/nme.1006
43.
Urick
,
B.
,
2016
, “
Reconstruction of Tensor Product Spline Surfaces to Integrate Surface-Surface Intersection Geometry and Topology While Maintaining Inter-Surface Continuity
,” Ph.D. thesis,
The University of Texas at Austin
,
Austin, TX
.
44.
Cottrell
,
J.
,
Hughes
,
T.
, and
Bazilevs
,
Y.
,
2009
,
Isogeometric Analysis: Toward Integration of CAD and FEA
,
John Wiley & Sons, Ltd.
,
Chichester, West Sussex, UK
.
45.
Urick
,
B.
,
Marussig
,
B.
,
Cohen
,
E.
,
Crawford
,
R.
,
Hughes
,
T.
, and
Riesenfeld
,
R.
,
2019
, “
Watertight Boolean Operations: A Framework for Creating Cad-Compatible Gap-Free Editable Solid Models
,”
Comput.-Aided Des.
,
115
(
1
), pp.
147
160
. 10.1016/j.cad.2019.05.034
46.
Muraki
,
Y.
,
Matsuyama
,
K.
,
Konno
,
K.
, and
Tokuyama
,
Y.
,
2014
, “
Reconstruction Method of Trimmed Surfaces Maintaining G1-Continuity with Adjacent Surfaces
,”
Comput.-Aided Des. Appl.
,
11
(
2
), pp.
165
171
. 10.1080/16864360.2014.846085
You do not currently have access to this content.