Abstract

A multiphysics computational framework is introduced and exercised to predict the wear behavior of two deformable, heat-conducting bodies under conditions of sliding contact. This framework enables the solution of a coupled system of partial differential equations (PDEs) expressing the conservation of energy and momentum along with two ordinary differential equations (ODEs) expressing mass conservation. This system is intended to capture wear evolution for each of the bodies forming a wear pair, in a self-consistent manner. Furthermore, an arbitrary-Lagrangian-Eulerian approach has been integrated to enable tracking the evolution of the wear fronts on both elements of the sliding contact pair through physics-informed mesh deformation. A theorem and a corollary are proved to indicate that most existing models describing wear that are expressed in the form of an ODE are actually manifestations of the law of conservation of mass. The framework is applied for two distinct slider-base pairs. The first involves an aluminum alloy slider and a copper alloy base. The second pair is identical to the first except it contains a thin strip of soda-lime glass embedded in the surface of the base. The effects of this glass layer on the wear of all participating bodies in comparison to the pair that does not contain this layer are presented. They indicate that while the glass layer has a wear mitigation effect for the stationary base it slightly increases the wear of the slider when compared with the respective bodies when the glass is not present.

References

References
1.
Põdra
,
P.
, and
Andersson
,
S.
,
1999
, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
,
32
(
2
), pp.
71
81
. 10.1016/S0301-679X(99)00012-2
2.
Po
,
P.
,
1999
, “
Simulating Sliding Wear With Finite Element Method
,”
Tribol. Int.
,
32
(
2
), pp.
71
81
. 10.1016/S0301-679X(99)00012-2
3.
Molinari
,
J. F.
,
Ortiz
,
M.
,
Radovitzky
,
R.
, and
Repetto
,
E. A.
,
2001
, “
Finite-Element Modeling of Dry Sliding Wear in Metals
,”
Eng. Comput.
,
18
(
3/4
), pp.
592
609
. 10.1108/00368790110407257
4.
Hegadekatte
,
V.
,
Huber
,
N.
, and
Kraft
,
O.
,
2005
, “
Finite Element Based Simulation of Dry Sliding Wear
,”
Modell. Simul. Mater. Sci. Eng.
,
13
(
1
), p.
57
. 10.1088/0965-0393/13/1/005
5.
Zmitrowicz
,
A.
,
2006
, “
Wear Patterns and Laws of Wear—A Review
,”
J. Theor. Appl. Mech.
,
44
(
2
), pp.
219
253
.
6.
Martínez
,
F.
,
Canales
,
M.
,
Izquierdo
,
S.
,
Jiménez
,
M.
, and
Martínez
,
M.
,
2012
, “
Finite Element Implementation and Validation of Wear Modelling in Sliding Polymer-Metal Contacts
,”
Wear
,
284–285
, pp.
52
64
. 10.1016/j.wear.2012.02.003
7.
Rezaei
,
A.
,
Paepegem
,
W. V.
,
Baets
,
P. D.
,
Ost
,
W.
, and
Degrieck
,
J.
,
2012
, “
Adaptive Finite Element Simulation of Wear Evolution in Radial Sliding Bearings
,”
Wear
,
296
(
1
), pp.
660
671
. 10.1016/j.wear.2012.08.013
8.
Woldman
,
M.
,
Heide
,
E. V. D.
,
Tinga
,
T.
, and
Masen
,
M. A.
,
2017
, “
A Finite Element Approach to Modeling Abrasive Wear Modes
,”
Tribol. Trans.
,
60
(
4
), pp.
711
718
. 10.1080/10402004.2016.1206647
9.
Michopoulos
,
J. G.
,
Iliopoulos
,
A.
, and
Young
,
M.
,
2012
, “
Towards Static Contact Multiphysics of Rough Surfaces
,”
Proceedings of the ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd Computers and Information in Engineering Conference, Parts A and B
,
Chicago, IL
,
Aug. 12–15
,
ASME
, pp.
165
176
. 10.1115/DETC2012-71055
10.
Michopoulos
,
J. G.
,
Young
,
M.
, and
Iliopoulos
,
A.
,
2013
, “
Multiscale and Multifield Multiphysics of High Current Pulse Static Contact With Rough Surfaces
,”
ASME 2013 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2013
,
Portland, OR
,
Aug. 4–7
.
11.
Michopoulos
,
J.
,
Marcus
,
Y.
, and
Iliopoulos
,
A.
,
2015
, “
A Multiphysics Theory for the Static Contact of Deformable Conductors With Fractal Rough Surfaces
,”
IEEE Trans. Plasma Sci.
,
43
(
5
), pp.
1597
1610
. 10.1109/TPS.2015.2416980
12.
Michopoulos
,
J.
, and
Young
,
M.
,
2014
, “
Coupled Electromagnetic and Structural Response for Determining EM Launcher Armature-Rail Interface Mechanical Fields
,”
5th DoD Innovative Science and Technology Electromagnetic Railgun Workshop
,
Washington, DC
,
Oct. 7
, ONR.
13.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
, and
Birnbaum
,
A. J.
,
2018
, “
On the Multiphysics Modeling of the Sliding Wear Between Deformable Heat Conducting Bodies
,”
Proceedings of the ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 1A: 38th Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, p. V01AT02A015. 10.1115/DETC2018-86077
14.
Michopoulos
,
J. G.
,
Iliopoulos
,
A. P.
,
Steuben
,
J. C.
, and
Birnbaum
,
A. J.
,
2019
, “
On the Effect of Glassy Coatings on the Wear of a Sliding Contact Via Multiphysics Modeling
,”
39th Computers and Information in Engineering Conference, ASME
,
Anaheim, CA
,
Aug. 18–21
.
15.
Barsoum
,
R.
, and
Dudt
,
P.
,
2017
, “
A Proposal for Usage of Glassy Material for Sliding Contact Wear Mitigation
,”
Private Communication
.
16.
Panel in Gun Liners
,
1954
, “
Research and Development of Materials for Gun Barrel Intrerior Protection, Materials Advisory Board – National Research Council – National Academy of Sciences
, December, Technical Report MAB-86-M.
17.
National Materials Advisory Ad Hoc Committee on Gun Tube Erosion
,
1975
, “
Erosion in Large Gun Barrels,” National Materials Advisory Board (NAS-NAE)
, Technical Report AD-A017-104 and NMAB-321.
18.
Altseimer
,
J. H.
,
1977
, “
The Utilization of Melting Techniques for Borehale Wall Stabilization
,” Los Alamos Scientific Laboratory of the University of California, American Nuclear Society, Topical Meeting, Energy and Mineral Recovery Research, April 12–14, 1977, Golden, Colorado, April, Technical Report LA-UR-77-840.
19.
Avitzur
,
B.
,
Beidleman
,
C. R.
,
Smackey
,
B. M.
, and
Ache
,
L. G.
,
1979
, “
Potential for Energy Conservation in the Metal Forming Industries
,”
Lehign University
, August, Technical Report COO-4930-1.
20.
Avitzur
,
B.
,
1983
,
Handbook of Metal-forming Processes (Ch 9: Tube and Tubular Products)
,
John Wiley and Sons
.
21.
Lewis
,
W. D.
,
1968
, “
Fluorocarbon Resin in Piston Rings-New Performance Data for Reciprocating Nonlubrication Air Compressor
,”
Lubrication Eng.
,
24
, pp.
112
127
.
22.
Khrushcov
,
M. M.
, and
Babichev
,
M. A.
,
1970
,
Abrasive Wear
,
Nauka
,
Moscow
.
23.
Rhee
,
S. K.
,
1970
, “
Wear Equation for Polymers Sliding Against Metal Surfaces
,”
Wear
,
16
(
6
), pp.
431
445
. 10.1016/0043-1648(70)90170-5
24.
Lancaster
,
J. K.
,
1973
,
Tribology Handbook
,
Butterworths
,
London
, Ch. Section 4A.
25.
Larsen-Basse
,
J.
,
1973
, “
Wear of Hard Metals in Rock Drilling: A Survey of Literature
,”
Power Metall.
,
16
(
31
), pp.
1
32
. 10.1179/pom.1973.16.31.001
26.
Moor
,
N. B.
,
Walker
,
B. H.
, and
Appl
,
F. C.
,
1978
, “
A Model of Performance and Life of Diamond Drill Boots
,”
Trans. ASME, Part J: Pressure Vessel Technol.
,
100
(
2
), pp.
164
171
. 10.1115/1.3454447
27.
Holm
,
R.
,
2000
,
Electric Contacts: Theory and Application
, 4th ed.,
Springer-Verlag
,
Berlin, Heidelberg, New York
.
28.
Archard
,
J. F.
,
1951
, “
Elastic Deformation and the Contact of Surfaces
,”
Nature
,
172
(
4385
), pp.
918
919
. 10.1038/172918a0
29.
Kragelsky
,
I. V.
,
1965
,
Friction and Wear
,
Butterworths
,
London
.
30.
Rabinowicz
,
E.
,
1965
,
Friction and Wear of Materials
,
John Wiley and Sons
.
New York
.
31.
Rabinowicz
,
E.
,
1971
, “
The Determination of the Compatibility of Metals Through Static Friction Tests
,”
ASLE Trans.
,
14
(
3
), pp.
198
205
. 10.1080/05698197108983243
32.
Harricks
,
P. L.
,
1976
, “
The Mechanism of Fretting and the Influence of Temperature
,”
Ind. Lubrication Technol.
,
28
(
1
), pp.
9
17
. 10.1108/eb053103
33.
Zhu
,
D.
,
Martini
,
A.
,
Wang
,
W.
,
Hu
,
Y.
,
Lisowsky
,
B.
, and
Wang
,
Q. J.
,
2007
, “
Simulation of Sliding Wear in Mixed Lubrication
,”
ASME J. Tribol.
,
129
(
3
), p.
544
. 10.1115/1.2736439
34.
Meng
,
H.
, and
Ludema
,
K.
,
1995
, “
Wear Models and Predictive Equations: Their Form and Content
,”
Wear
,
181–183
(
Part 2
), pp.
443
457
. 10.1016/0043-1648(95)90158-2
35.
COMSOL
,
2017
,
Comsol multiphysics
.
36.
Woydt
,
M.
, and
Wäsche
,
R.
,
2010
, “
The History of the Stribeck Curve and Ball Bearing Steels: The Role of Adolf Martens
,”
Wear
,
268
(
11–12
), pp.
1542
1546
. 10.1016/j.wear.2010.02.015
37.
Yuan
,
F.
,
Liou
,
N.-S.
, and
Prakash
,
V.
,
2009
, “
High-Speed Frictional Slip At Metal-on-Metal Interfaces
,”
Int. J. Plast.
,
25
(
4
), pp.
612
634
. 10.1016/j.ijplas.2008.12.006
38.
Cahoon
,
J. R.
,
Broughton
,
W. H.
, and
Kutzak
,
A. R.
,
1971
, “
The Determination of Yield Strength From Hardness Measurements
,”
Metall. Trans.
,
2
(
7
), pp.
1979
1983
.
39.
Krasil’nikov
,
V.
,
Savotchenko
,
S.
, and
Parkhomenko
,
A.
,
2010
, “
Phenomenological Model of Yield Strength Temperature Dependence for Irradiated Materials
,”
Russ. Metallurgy (Metally)
,
2010
(
4
), pp.
292
295
. 10.1134/S0036029510040087
40.
Challen
,
J.
,
Kopalinsky
,
E.
, and
Oxley
,
P.
,
1987
, “
An Asperity Deformation Model for Relating the Coefficients of Friction and Wear in Sliding Metallic Friction
,”
Tribology–Friction, Lubrication and Wear. Fifty Years on.
,
190
(
2
), pp.
145
154
. 10.1016/0043-1648(96)80013-5
You do not currently have access to this content.