Abstract

Energy 3D printing processes have enabled the manufacturing of energy storage devices with complex structures, high energy density, and high power density. Among these processes, freeze nano printing (FNP) has risen as a promising process. However, quality problems are among the biggest barriers for FNP and other 3D printing processes. Particularly, the droplet solidification time in FNP governs the thermal distribution and subsequently determines the product solidification, formation, and quality. To describe the solidification time, a physical-based heat transfer model is built. But, it is computationally intensive. The objective of this work is to build an efficient emulator for the physical model. There are several challenges unaddressed before: (1) the solidification time at various locations, which is a multi-dimensional array response, needs to be modeled and (2) the construction and evaluation of the emulator at new process settings need to be quick and accurate. Here, we integrate joint tensor decomposition and nearest neighbor Gaussian process (NNGP) to construct an efficient multi-dimensional array response emulator with process settings as inputs. Specifically, structured joint tensor decomposition decomposes the multi-dimensional array responses at various process settings into the setting-specific core tensors and shared low-dimensional factorization matrices. Then, each independent entry of the core tensor is modeled with an NNGP, which addresses the computationally intensive model estimation problem by sampling the nearest neighborhood samples. Finally, tensor reconstruction is performed to make predictions of the solidification time for new process settings. The proposed framework is demonstrated by emulating the physical model of FNP and compared with alternative tensor (multi-dimensional array) regression models.

References

References
1.
Lethien
,
C.
,
Le Bideau
,
J.
, and
Brousse
,
T.
,
2019
, “
Challenges and Prospects of 3D Micro-Supercapacitors for Powering the Internet of Things
,”
Energy Environ. Sci.
,
12
(
1
), pp.
96
115
. 10.1039/C8EE02029A
2.
Zubi
,
G.
,
Dufo-Lopez
,
R.
,
Carvalho
,
M.
, and
Pasaoglu
,
G.
,
2018
, “
The Lithium-Ion Battery: State of the Art and Future Perspectives
,”
Renew. Sustain. Energy Rev.
,
89
, pp.
292
308
. 10.1016/j.rser.2018.03.002
3.
Council
,
N. R.
,
2004
,
Meeting the Energy Needs of Future Warriors
,
National Academies Press
,
Washington, DC
.
4.
Pu
,
X.
,
Hu
,
W.
, and
Wang
,
Z. L.
,
2018
, “
Toward Wearable Self-Charging Power Systems: The Integration of Energy-Harvesting and Storage Devices
,”
Small
,
14
(
1
), p.
1702817
. 10.1002/smll.201702817
5.
Huang
,
Y.
,
Zeng
,
Y.
,
Yu
,
M.
,
Liu
,
P.
,
Tong
,
Y.
,
Cheng
,
F.
, and
Lu
,
X.
,
2018
, “
Recent Smart Methods for Achieving High-Energy Asymmetric Supercapacitors
,”
Small Methods
,
2
(
2
), p.
1700230
. 10.1002/smtd.201700230
6.
Shen
,
K.
,
Ding
,
J.
, and
Yang
,
S.
,
2018
, “
3D Printing Quasi-Solid-State Asymmetric Micro-Supercapacitors With Ultrahigh Areal Energy Density
,”
Adv. Energy Mater.
,
8
(
20
), p.
1800408
. 10.1002/aenm.201800408
7.
Berman
,
B.
,
2012
, “
3-D Printing: The New Industrial Revolution
,”
Bus. Horiz.
,
55
(
2
), pp.
155
162
. 10.1016/j.bushor.2011.11.003
8.
Fu
,
K.
,
Wang
,
Y.
,
Yan
,
C.
,
Yao
,
Y.
,
Chen
,
Y.
,
Dai
,
J.
, and
Wang
,
Z.
,
2016
, “
Graphene Oxide-Based Electrode Inks for 3D-Printed Lithium-Ion Batteries
,”
Adv. Mater.
,
28
(
23
), pp.
2587
2594
. 10.1002/adma.201505391
9.
Areir
,
M.
,
Xu
,
Y.
,
Harrison
,
D.
, and
Fyson
,
J.
,
2017
, “
3D Printing of Highly Flexible Supercapacitor Designed for Wearable Energy Storage
,”
Mater. Sci. Eng. B
,
226
, pp.
29
38
. 10.1016/j.mseb.2017.09.004
10.
Zhang
,
F.
,
Wei
,
M.
,
Viswanathan
,
V. V.
,
Swart
,
B.
,
Shao
,
Y.
,
Wu
,
G.
, and
Zhou
,
C.
,
2017
, “
3D Printing Technologies for Electrochemical Energy Storage
,”
Nano Energy
,
40
, pp.
418
431
. 10.1016/j.nanoen.2017.08.037
11.
Zhang
,
F.
,
Yang
,
F.
,
Lin
,
D.
, and
Zhou
,
C.
,
2017
, “
Parameter Study of Three-Dimensional Printing Graphene Oxide Based on Directional Freezing
,”
ASME J. Manuf. Sci. Eng.
,
139
(
3
), p.
031016
. 10.1115/1.4034669
12.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
3D Printing of Graphene Aerogels
,”
Small
,
12
(
13
), pp.
1702
1708
. 10.1002/smll.201503524
13.
Bikas
,
H.
,
Stavropoulus
,
P.
, and
Chryssolouris
,
G.
,
2016
, “
Additive Manufacturing Methods and Modelling Approaches: A Critical Review
,”
Int. J. Adv. Manuf. Technol.
,
83
(
1–4
), pp.
389
405
. 10.1007/s00170-015-7576-2
14.
Zhao
,
G.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
Thermal Analysis on Directional Freezing of Nano Aqueous Suspensions in Graphene Aerogel 3D Printing Process
,”
ASME 2016 11th International Manufacturing Science and Engineering Conference
,
Blacksburg, VA
,
June 27–July 1
, pp.
V003T08A011–V003T08A011
.
15.
Kennedy
,
M. C.
, and
O’Hagan
,
A.
,
2001
, “
Bayesian Calibration of Computer Models
,”
J. R. Stat. Soc. B
,
63
(
3
), pp.
425
464
. 10.1111/1467-9868.00294
16.
Higdon
,
D.
,
Gattiker
,
J.
,
Williams
,
B.
, and
Rightley
,
M.
,
2008
, “
Computer Model Calibration Using High-Dimensional Output
,”
J. Am. Stat. Assoc.
,
103
(
482
), pp.
570
583
. 10.1198/016214507000000888
17.
Mak
,
S.
,
Sung
,
C. L.
,
Wang
,
X.
,
Yeh
,
S. T.
,
Chang
,
Y. H.
,
Joseph
,
V. R.
, and
Wu
,
C. J.
,
2018
, “
An Efficient Surrogate Model for Emulation and Physics Extraction of Large Eddy Simulations
,”
J. Am. Stat. Assoc.
,
113
(
524
), pp.
1443
1456
. 10.1080/01621459.2017.1409123
18.
Sidiropoulos
,
N. D.
,
De Lathauwer
,
L.
,
Fu
,
X.
,
Huang
,
K.
,
Papalexakis
,
E. E.
, and
Faloutsos
,
C.
,
2017
, “
Tensor Decomposition for Signal Processing and Machine Learning
,”
IEEE Trans. Signal Process.
,
65
(
13
), pp.
3551
3582
. 10.1109/TSP.2017.2690524
19.
Sørensen
,
M.
, and
De Lathauwer
,
L. D.
,
2015
, “
Coupled Canonical Polyadic Decompositions and (Coupled) Decompositions in Multilinear Rank-(L_r,n,L_r,n,1) Terms—Part I: Uniqueness
,”
SIAM J. Matrix Anal. Appl.
,
36
(
2
), pp.
496
522
. 10.1137/140956853
20.
Farias
,
R. C.
,
Cohen
,
J. E.
, and
Comon
,
P.
,
2016
, “
Exploring Multimodal Data Fusion Through Joint Decompositions With Flexible Couplings
,”
IEEE Trans. Signal Process.
,
64
(
18
), pp.
4830
4844
. 10.1109/TSP.2016.2576425
21.
Datta
,
A.
,
Banerjee
,
S.
,
Finley
,
A. O.
, and
Gelfand
,
A. E.
,
2016
, “
Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets
,”
J. Am. Stat. Assoc.
,
111
(
514
), pp.
800
812
. 10.1080/01621459.2015.1044091
22.
Yuan
,
P.
, and
Gu
,
D.
,
2015
, “
Molten Pool Behaviour and Its Physical Mechanism During Selective Laser Melting of TiC/AlSi10Mg Nanocomposites: Simulation and Experiments
,”
J. Phys. D: Appl. Phys.
,
48
(
3
), p.
035303
. 10.1088/0022-3727/48/3/035303
23.
Wu
,
H. C.
,
Lin
,
H. J.
,
Kuo
,
Y. C.
, and
Hwang
,
W. S.
,
2004
, “
Simulation of Droplet Ejection for a Piezoelectric Inkjet Printing Device
,”
Mater. Trans.
,
45
(
3
), pp.
893
899
. 10.2320/matertrans.45.893
24.
Sun
,
W. W.
, and
Li
,
L.
,
2017
, “
STORE: Sparse Tensor Response Regression and Neuroimaging Analysis
,”
J. Mach. Learn. Res.
,
18
(
1
), pp.
4908
4944
.
25.
Peng
,
J.
,
Zhu
,
J.
,
Bergamaschi
,
A.
,
Han
,
W.
,
Noh
,
D. Y.
,
Pollack
,
J. R.
, and
Wang
,
P.
,
2010
, “
Regularized Multivariate Regression for Identifying Master Predictors With Application to Integrative Genomics Study of Breast Cancer
,”
Ann. Appl. Stat.
,
4
(
1
), pp.
53
77
. 10.1214/09-AOAS271
26.
Rabusseau
,
G.
, and
Kadri
,
H.
,
2016
, “
Low-Rank Regression With Tensor Responses
,”
Adv. Neural Inf. Process. Syst.
, pp.
1867
1875
.
27.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li-Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
. 10.1002/adma.201301036
28.
Zhu
,
C.
,
Liu
,
T.
,
Qian
,
F.
,
Han
,
T. Y. J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
, and
Li
,
Y.
,
2016
, “
Supercapacitors Based on Three-Dimensional Hierarchical Graphene Aerogels With Periodic Macropores
,”
Nano Lett.
,
16
(
6
), pp.
3448
3456
. 10.1021/acs.nanolett.5b04965
29.
Liu
,
J.
,
Liu
,
C.
,
Bai
,
Y.
,
Rao
,
P.
,
Williams
,
C. B.
, and
Kong
,
Z.
,
2019
, “
Layer-Wise Spatial Modeling of Porosity in Additive Manufacturing
,”
IISE Trans.
,
51
(
2
), pp.
109
123
. 10.1080/24725854.2018.1478169
30.
Huang
,
Q.
,
Zhang
,
J.
,
Sabbaghi
,
A.
, and
Dasgupta
,
T.
,
2015
, “
Optimal Offline Compensation of Shape Shrinkage for Three-Dimensional Printing Processes
,”
IIE Trans.
,
47
(
5
), pp.
431
441
. 10.1080/0740817X.2014.955599
31.
Tootooni
,
M. S.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z. J.
, and
Borgesen
,
P.
,
2017
, “
Classifying the Dimensional Variation in Additive Manufactured Parts From Laser-Scanned Three-Dimensional Point Cloud Data Using Machine Learning Approaches
,”
ASME J. Manuf. Sci. Eng.
,
139
(
9
), p.
091005
. 10.1115/1.4036641
32.
Liravi
,
F.
,
Darleux
,
R.
, and
Toyserkani
,
E.
,
2017
, “
Additive Manufacturing of 3D Structures With Non-Newtonian Highly Viscous Fluids: Finite Element Modeling and Experimental Validation
,”
Addit. Manuf.
,
13
, pp.
113
123
. 10.1016/j.addma.2016.10.008
33.
Tapia
,
G.
,
Elwany
,
A. H.
, and
Sang
,
H.
,
2016
, “
Prediction of Porosity in Metal-Based Additive Manufacturing Using Spatial Gaussian Process Models
,”
Addit. Manuf.
,
12
, pp.
282
290
. 10.1016/j.addma.2016.05.009
34.
Li
,
J.
,
Jin
,
R.
, and
Hang
,
Z. Y.
,
2018
, “
Integration of Physically-Based and Data-Driven Approaches for Thermal Field Prediction in Additive Manufacturing
,”
Mater. Des.
,
139
, pp.
473
485
. 10.1016/j.matdes.2017.11.028
35.
Sun
,
H.
,
Pedrielli
,
G.
,
Zhao
,
G.
,
Bragagnolo
,
A.
,
Zhou
,
C.
,
Pan
,
R.
, and
Xu
,
W.
,
2018
, “
Cyber-Coordinated Simulation Models for Multi-Stage Additive Manufacturing of Energy Products
,”
2018 IEEE 14th International Conference on Automation Science and Engineering (CASE)
,
Munich, Germany
,
Aug. 20–24
, pp.
893
898
.
36.
Datta
,
A.
,
Banerjee
,
S.
,
Finley
,
A. O.
, and
Gelfand
,
A. E.
,
2016
, “
On Nearest-Neighbor Gaussian Process Models for Massive Spatial Data
,”
Wiley Interdiscipl. Rev. Comput. Stat.
,
8
(
5
), pp.
162
171
. 10.1002/wics.1383
37.
Oseledets
,
I. V.
,
2011
, “
Tensor-Train Decomposition
,”
SIAM J. Sci. Comput.
,
33
(
5
), pp.
2295
2317
. 10.1137/090752286
38.
Yan
,
H.
,
Paynabar
,
K.
, and
Pacella
,
M.
,
2018
, “
Structured Point Cloud Data Analysis Via Regularized Tensor Regression for Process Modeling and Optimization
,”
Technometrics
, pp.
1
36
. 10.1080/00401706.2018.1529628
39.
Tootooni
,
M. S.
,
Dsouza
,
A.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Kong
,
Z. J.
, and
Borgesen
,
P.
,
2017
, “
Assessing the Geometric Integrity of Additive Manufactured Parts From Point Cloud Data Using Spectral Graph Theoretic Sparse Representation-Based Classification
,”
ASME 2017 12th International Manufacturing Science and Engineering Conference Collocated With the JSME/ASME 2017 6th International Conference on Materials and Processing
,
Los Angeles, CA
,
June 4–8
, pp.
V002T01A042–V002T01A042
.
40.
Yan
,
H.
,
Paynabar
,
K.
, and
Shi
,
J.
,
2015
, “
Image-Based Process Monitoring Using Low-Rank Tensor Decomposition
,”
IEEE Trans. Autom. Sci. Eng.
,
12
(
1
), pp.
216
227
. 10.1109/TASE.2014.2327029
41.
Vervliet
,
N.
,
Debals
,
O.
, and
De Lathauwer
,
L.
,
2016
, “
Tensorlab 3.0—Numerical Optimization Strategies for Large-Scale Constrained and Coupled Matrix/Tensor Factorization
,”
2016 50th Asilomar Conference on Signals, Systems and Computers
,
Pacific Grove, CA
,
Nov. 6–9
, pp.
1733
1738
.
42.
Zhou
,
S.
, and
Jin
,
J.
,
2005
, “
Automatic Feature Selection for Unsupervised Clustering of Cycle-Based Signals in Manufacturing Processes
,”
IIE Trans.
,
37
(
6
), pp.
569
584
. 10.1080/07408170590929036
43.
Segura
,
L. J.
,
Zhao
,
G.
,
Sun
,
H.
, and
Zhou
,
C.
, “
Gaussian Process Tensor Responses Emulation for Droplet Solidification in Freeze Nano 3D Printing of Energy Products
,”
ASME 2019 14th International Manufacturing Science and Engineering Conference
,
Erie, PA
,
June 10– 14
.
44.
Vecchia
,
A. V.
,
1988
, “
Estimation and Model Identification for Continuous Spatial Processes
,”
J. R. Stat. Soc. Ser. B (Methodol.)
,
50
(
2
), pp.
297
312
. 10.1111/j.2517-6161.1988.tb01729.x
45.
Williams
,
C. K.
, and
Rasmussen
,
C. E.
,
2006
,
Gaussian Processes for Machine Learning
, 3rd ed., Vol.
2
,
MIT Press
,
Cambridge, MA
.
46.
Finley
,
A. O.
,
Datta
,
A.
,
Cook
,
B. D.
,
Morton
,
D. C.
,
Andersen
,
H. E.
, and
Banerjee
,
S.
,
2019
, “
Efficient Algorithms for Bayesian Nearest Neighbor Gaussian Processes
,”
J. Comput. Graph. Stat.
,
28
(
2
), pp.
1
14
.
47.
Zhang
,
L.
,
Datta
,
A.
, and
Banerjee
,
S.
,
2019
, “
Practical Bayesian Modeling and Inference for Massive Spatial Data Sets on Modest Computing Environments
,”
Stat. Anal. Data Min.: ASA Data Sci. J.
,
12
(
3
), pp.
197
209
. 10.1002/sam.11413
48.
Santner
,
T. J.
,
Williams
,
B. J.
,
Notz
,
W.
, and
Williams
,
B. J.
,
2003
,
The Design and Analysis of Computer Experiments
,
Springer
,
New York
.
49.
Kolda
,
T. G.
, and
Bader
,
B. W.
,
2009
, “
Tensor Decompositions and Applications
,”
SIAM Rev.
,
51
(
3
), pp.
455
500
. 10.1137/07070111X
You do not currently have access to this content.