Abstract

Mesh generation for traditional finite element analysis has proven to be very difficult to fully automate especially using hexahedral elements for complex 3D geometry. Several modifications to the finite element method (FEM), such as the meshless methods, have been proposed for avoiding mesh generation. An alternative approach has recently gained popularity where the geometry, created as a solid model in cad software, is embedded or immersed in a nonconforming background mesh for analysis. In this approach, referred to here as the immersed boundary approach, a background mesh that is independent of the geometry is used for piecewise interpolation or approximation of the solution. Therefore, a uniform mesh with regular-shaped or undistorted elements can be used, and such a mesh is easy to generate automatically. When the geometry is immersed in the background mesh, the boundary elements are often only partly inside the geometry and the nodes of the mesh may not be on the boundaries. Many new methods have been developed to integrate over partial elements and to apply boundary and interface conditions when the boundaries of the geometries do not conform to the background mesh. These methods are reviewed in this article with particular emphasis on the implicit boundary method and step boundary method for applying boundary conditions. In addition, B-spline elements and several applications of the immersed boundary approach are surveyed including composite microstructures and structural elements for plates and shells.

References

References
1.
Belytschko
,
T.
,
Krongauz
,
Y.
,
Organ
,
D.
,
Fleming
,
M.
, and
Krysl
,
P.
,
1996
, “
Meshless Methods: An Overview and Recent Developments
,”
Comput. Methods Appl. Mech. Eng.
,
139
(
1–4
), pp.
3
47
. 10.1016/S0045-7825(96)01078-X
2.
Fries
,
T. P.
, and
Belytschko
,
T.
,
2010
, “
Review: The Extended/Generalized Finite Element Method: An Overview of the Method and Its Applications
,”
Int. J. Numer. Methods Eng.
,
84
(
3
), pp.
253
304
. 10.1002/nme.2914
3.
Belytschko
,
T.
,
Parimi
,
C.
,
Moes
,
N.
,
Usui
,
S.
, and
Sukumar
,
N.
,
2003
, “
Structured Extended Finite Element Methods for Solids Defined by Implicit Surface
,”
Int. J. Numer. Methods Eng.
,
56
(
4
), pp.
609
635
. 10.1002/nme.686
4.
Kumar
,
A. V.
,
Padmanabhan
,
S.
, and
Burla
,
R. K.
,
2008
, “
Implicit Boundary Method for Finite Element Analysis Using Non-Conforming Mesh or Grid
,”
Int. J. Numer. Methods Eng.
,
74
(
9
), pp.
1421
1447
. 10.1002/nme.2216
5.
Burla
,
R.
, and
Kumar
,
A. V.
,
2008
, “
Implicit Boundary Method for Analysis Using Uniform B-Spline Basis and Structured Grid
,”
Int. J. Numer. Methods Eng.
,
76
(
13
), pp.
1993
2028
. 10.1002/nme.2390
6.
Löhner
,
R.
,
Cebral
,
R. J.
,
Camelli
,
F. E.
,
Appanaboyina
,
S.
,
Baum
,
J. D.
,
Mestreau
,
E. L.
, and
Soto
,
O. A.
,
2008
, “
Adaptive Embedded and Immersed Unstructured Grid Techniques
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
25–28
), pp.
2173
2197
. 10.1016/j.cma.2007.09.010
7.
Glowinski
,
R.
, and
Kuznetsov
,
Y.
,
2007
, “
Distributed Lagrange Multipliers Based on Fictitious Domain Method for Second Order Elliptic Problems
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
8
), pp.
1498
1506
. 10.1016/j.cma.2006.05.013
8.
Düster
,
A.
,
Parvizian
,
J.
,
Yang
,
Z.
, and
Rank
,
E.
,
2010
, “
The Finite Cell Method for Three-Dimensional Problems of Solid Mechanics
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45–48
), pp.
3768
3782
. 10.1016/j.cma.2008.02.036
9.
Parvizian
,
J.
,
Düster
,
A.
, and
Rank
,
E.
,
2007
, “
Finite Cell Method: h- and p- Extension for Embedded Domain Methods in Solid Mechanics
,”
Comput. Mech.
,
41
(
1
), pp.
122
133
. 10.1007/s00466-007-0173-y
10.
Schillinger
,
D.
, and
Ruess
,
M.
,
2015
, “
The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models
,”
Arc. Computat. Methods Eng.
,
22
(
3
), pp.
391
455
. 10.1007/s11831-014-9115-y
11.
Peskin
,
C.
,
2002
, “
The Immersed Boundary Method
,”
Acta. Numer.
,
11
(
1
), pp.
479
517
. 10.1017/S0962492902000077
12.
Mittal
,
R.
, and
Iaccarino
,
G.
,
2005
, “
Immersed Boundary Methods
,”
Annu. Rev. Fluid Mech.
,
37
(
1
), pp.
239
261
. 10.1146/annurev.fluid.37.061903.175743
13.
Babuska
,
I.
,
1973
, “
The Finite Element Method With Penalty
,”
Math. Comput.
,
27
(
122
), pp.
221
228
. 10.1090/S0025-5718-1973-0351118-5
14.
Clark
,
B. W.
, and
Anderson
,
D. C.
,
2003
, “
The Penalty Boundary Method
,”
Finite Elem. Anal. Des.
,
39
(
5–6
), pp.
387
401
. 10.1016/S0168-874X(02)00080-X
15.
Babuška
,
I.
,
1973
, “
The Finite Element Method With Langrange Multipliers
,”
Numer. Math.
,
20
(
3
), pp.
179
192
. 10.1007/BF01436561
16.
Ji
,
H.
, and
Dolbow
,
J. E.
,
2004
, “
On Strategies for Enforcing Interfacial Constraints and Evaluating Jump Conditions With the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
61
(
14
), pp.
2508
2535
. 10.1002/nme.1167
17.
Dolbow
,
J.
,
Mourad
,
H. M.
, and
Harari
,
I.
,
2007
, “
A Bubble-Stabilized Finite Element Method for Dirichlet Constraints on Embedded Interfaces
,”
Int. J. Numer. Methods Eng.
,
69
(
4
), pp.
772
793
. 10.1002/nme.1788
18.
Barbosa
,
H. J. C.
, and
Hughes
,
T. J. R.
,
1991
, “
The Finite Element Method With Lagrangian Multipliers on the Boundary: Circumventing the Babuška-Brezzi Condition
,”
Comput. Methods Appl. Mech. Eng.
,
85
(
1
), pp.
109
128
. 10.1016/0045-7825(91)90125-P
19.
Moës
,
N.
,
Béchet
,
E.
, and
Tourbier
,
M.
,
2006
, “
Imposing Dirichlet Boundary Conditions in the Extended Finite Element Method
,”
Int. J. Numer. Methods Eng.
,
67
(
12
), pp.
1641
1669
. 10.1002/nme.1675
20.
Kim
,
T. Y.
,
Dolbow
,
J. E.
, and
Laursen
,
T. A.
,
2007
, “
A Mortared Finite Element Method for Frictional Contact on Arbitrary Interfaces
,”
Comput. Mech.
,
39
(
3
), pp.
223
235
. 10.1007/s00466-005-0019-4
21.
Burman
,
E.
, and
Hansbo
,
P.
,
2010
, “
Fictitious Domain Finite Element Methods Using Cut Elements: I. A Stabilized Lagrange Multiplier Method
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
41–44
), pp.
2680
2686
. 10.1016/j.cma.2010.05.011
22.
Embar
,
A.
,
Dolbow
,
J.
, and
Harari
,
I.
,
2010
, “
Imposing Dirichlet Boundary Conditions With Nitsche’s Method and Spline-Based Finite Elements
,”
Int. J. Numer. Methods Eng.
,
83
(
7
), pp.
877
898
. 10.1002/nme.2863
23.
Dolbow
,
J.
, and
Harari
,
I.
,
2009
, “
An Efficient Finite Element Method for Embedded Interface Problems
,”
Int. J. Numer. Methods Eng.
,
78
(
2
), pp.
229
252
. 10.1002/nme.2486
24.
Hautefeuille
,
M.
,
Annavarapu
,
C.
, and
Dolbow
,
J. E.
,
2012
, “
Robust Imposition of Dirichlet Boundary Conditions on Embedded Surfaces
,”
Int. J. Numer. Methods Eng.
,
90
(
1
), pp.
40
64
. 10.1002/nme.3306
25.
Ruess
,
M.
,
Tal
,
D.
,
Trabelsi
,
N.
,
Yosibash
,
Z.
, and
Rank
,
E.
,
2012
, “
The Finite Cell Method for Bone Simulations: Verification and Validation
,”
Biomech. Model Mechanobiol.
,
11
(
3–4
), pp.
425
437
. 10.1007/s10237-011-0322-2
26.
Schillinger
,
D.
,
Ruess
,
M.
,
Zander
,
N.
,
Bazilevs
,
Y.
,
Duster
,
A.
, and
Rank
,
E.
,
2012
, “
Small and Large Deformation Analysis With the p- and B-Spline Versions of the Finite Cell Method
,”
Comput. Methods
,
50
(
4
), pp.
445
478
. 10.1007/s00466-012-0684-z
27.
Ruess
,
M.
,
Schillinger
,
D.
,
Bazilevs
,
Y.
,
Varduhn
,
V.
, and
Rank
,
E.
,
2013
, “
Weakly Enforced Essential Boundary Conditions for NURBS Embedded and Trimmed NURBS Geometries on the Basis of the Finite Cell Method
,”
Int. J. Numer. Methods Eng.
,
95
(
10
), pp.
811
846
. 10.1002/nme.4522
28.
Main
,
A.
, and
Scovazzi
,
G.
,
2018
, “
The Shifted Boundary Method for Embedded Domain Computations. Part I: Poisson and Stokes Problems
,”
J. Comput. Phys.
,
372
(
1
), pp.
972
995
. 10.1016/j.jcp.2017.10.026
29.
Main
,
A.
, and
Scovazzi
,
G.
,
2018
, “
The Shifted Boundary Method for Embedded Domain Computations. Part II: Linear Advection-Diffusion and Incompressible Navier-Stokes Equations
,”
J. Comput. Phys.
,
372
(
1
), pp.
996
1026
. 10.1016/j.jcp.2018.01.023
30.
Song
,
T.
,
Main
,
A.
,
Scovazzi
,
G.
, and
Ricchiuto
,
M.
,
2018
, “
The Shifted Boundary Method for Hyperbolic Systems: Embedded Domain Computations of Linear Waves and Shallow Water Flows
,”
J. Comput. Phys.
,
369
(
1
), pp.
45
79
. 10.1016/j.jcp.2018.04.052
31.
Kantorovich
,
L. V.
, and
Krylov
,
V. I.
,
1958
,
Approximate Methods for Higher Analysis
,
Interscience Publishers
,
New York
.
32.
Rvachev
,
V. L.
,
Sheiko
,
T. I.
,
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2001
, “
Transfinite Interpolation Over Implicitly Defined Sets
,”
Comput. Aided Geom. Des.
,
18
(
3
), pp.
195
220
. 10.1016/S0167-8396(01)00015-2
33.
Höllig
,
K.
,
2003
,
Finite Element Methods With B-Splines
,
SIAM
,
Philadelphia, PA
.
34.
Rvachev
,
V. L.
, and
Shieko
,
T. I.
,
1995
, “
R-Functions in Boundary Value Problems in Mechanics
,”
ASME Appl. Mech. Rev.
,
48
(
4
), pp.
151
188
. 10.1115/1.3005099
35.
Shapiro
,
V.
, and
Tsukanov
,
I.
,
1999
, “
Meshfree Simulation of Deforming Domains
,”
Comput. Aided Des.
,
31
(
7
), pp.
459
471
. 10.1016/S0010-4485(99)00043-3
36.
Osher
,
S.
, and
Fedkiw
,
R.
,
2002
,
Level Set Methods and Dynamic Implicit Surfaces
,
Springer-Verlag
,
New York
.
37.
Manogaran
,
A.
, and
Kumar
,
A. V.
,
2017
, “
Mesh Independent Modeling of Essential, Interface and Periodic Boundary Conditions Using Step Boundary Method
,”
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Cleveland, OH
,
Paper No. DETC2017-68044
.
38.
Chen
,
H.
, and
Kumar
,
A. V.
,
2014
, “
Method for Imposing Boundary Conditions on Reissner-Mindlin Plates for Analysis Using Structured Background Mesh
,”
Comput. Struct.
,
138
(
1
), pp.
1
11
. 10.1016/j.compstruc.2014.02.004
39.
Periyasamy
,
P. S.
, and
Kumar
,
A. V.
,
2012
, “
Mesh Independent Analysis of Shell-Like Structures
,”
Int. J. Numer. Methods Eng.
,
91
(
5
), pp.
472
490
. 10.1002/nme.4278
40.
Zhang
,
S. U.
, and
Kumar
,
A. V.
,
2010
, “
Magnetostatic Analysis Using Implicit Boundary Finite Element Method
,”
IEEE Trans. Magn.
,
46
(
5
), pp.
1159
1166
. 10.1109/TMAG.2009.2039940
41.
Zhang
,
S. U.
, and
Kumar
,
A. V.
,
2011
, “
3D Magnetostatic Analysis Using Structured Mesh and Nodal Elements
,”
IEEE Trans. Magn.
,
47
(
1
), pp.
198
206
. 10.1109/TMAG.2010.2086064
42.
Zhang
,
Z.
, and
Kumar
,
A. V.
,
2017
, “
Immersed Boundary Modal Analysis and Forced Vibration Simulation Using Step Boundary Method
,”
Finite Elem. Anal. Des.
,
126
(
1
), pp.
1
12
. 10.1016/j.finel.2016.11.006
43.
Hughes
,
T. J. R.
,
Cottrell
,
J. A.
, and
Bazilevs
,
Y.
,
2005
, “
Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry and Mesh Refinement
,”
Comput. Methods Appl. Mech. Eng.
,
194
(
39–41
), pp.
4135
4195
. 10.1016/j.cma.2004.10.008
44.
Cottrell
,
J. A.
,
Reali
,
A.
,
Bazilevs
,
Y.
, and
Hughes
,
T. J. R.
,
2006
, “
Isogeometric Analysis of Structural Vibrations
,”
Comput. Methods Appl. Mech. Eng.
,
195
(
41–43
), pp.
5257
5296
. 10.1016/j.cma.2005.09.027
45.
Cottrell
,
J. A.
,
Hughes
,
T. J. R.
, and
Reali
,
A.
,
2007
, “
Studies of Refinement and Continuity in Isogeometric Structural Analysis
,”
Comput. Methods Appl. Mech. Eng.
,
196
(
41–44
), pp.
4160
4183
. 10.1016/j.cma.2007.04.007
46.
Bazilevs
,
Y.
,
Calo
,
V. M.
,
Cottrell
,
J. A.
,
Evans
,
J. A.
,
Hughes
,
T. J. R.
,
Lipton
,
S.
,
Scott
,
M. A.
, and
Sederberg
,
T. W.
,
2010
, “
Isogeometric Analysis Using T-Splines
,”
Comput. Methods Appl. Mech. Eng.
,
199
(
5–8
), pp.
229
263
. 10.1016/j.cma.2009.02.036
47.
Rank
,
E.
,
Ruess
,
M.
,
Kollmannsberger
,
S.
,
Schillinger
,
D.
, and
Düster
,
A.
,
2012
, “
Geometric Modeling, Isogeometric Analysis and the Finite Cell Method
,”
Comput. Methods Appl. Mech. Eng.
,
249–250
(
1
), pp.
104
115
. 10.1016/j.cma.2012.05.022
48.
Sanches
,
R. A. K.
,
Bornemann
,
P. B.
, and
Cirak
,
F.
,
2011
, “
Immersed b-Spline (i-Spline) Finite Element Method for Geometrically Complex Domains
,”
Comput. Methods Appl. Mech. Eng.
,
200
(
13–16
), pp.
1432
1445
. 10.1016/j.cma.2010.12.008
49.
Bhosale
,
N.
, and
Kumar
,
A. V.
,
2016
, “
Total Lagrangian Formulation for Large Deformation Modeling Using Uniform Background Mesh
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conference
,
Paper No. IDETC2016-60402
.
50.
Cortis
,
M.
,
Coombs
,
W.
,
Augarde
,
C.
,
Brown
,
M.
,
Brennan
,
A.
, and
Robinson
,
S.
,
2018
, “
Imposition of Essential Boundary Conditions in the Material Point Method
,”
Int. J. Numer. Methods Eng.
,
113
(
1
), pp.
130
152
. 10.1002/nme.5606
51.
Bing
,
Y.
,
Cortis
,
T. J.
,
Charlton
,
W. M.
, and
Augarde
,
C. E.
,
2019
, “
B-Spline Based Boundary Conditions in the Material Point Method
,”
Comput. Struct.
,
212
(
1
), pp.
257
274
. 10.1016/j.compstruc.2018.11.003
52.
Burla
,
R.
,
Kumar
,
A. V.
, and
Sankar
,
B. V.
,
2009
, “
Implicit Boundary Method for Determination of Effective Properties of Composite Microstructures
,”
Int. J. Solids Struct.
,
46
(
11–12
), pp.
2514
2526
. 10.1016/j.ijsolstr.2009.02.003
53.
Belytschko
,
T.
,
Stolarski
,
H.
,
Liu
,
W. K.
,
Carpenter
,
N.
, and
Ong
,
J. S.-J.
,
1985
, “
Stress Projection for Membrane and Shear Locking in Shell Finite Elements
,”
Comput. Methods Appl. Mech. Eng.
,
51
(
1–3
), pp.
221
258
. 10.1016/0045-7825(85)90035-0
54.
Shapiro
,
V.
, and
Tsukanov
,
I.
,
2007
, “
Adaptive Multiresolution Refinement With Distance Fields
,”
Int. J. Numer. Methods Eng.
,
72
(
11
), pp.
1355
1386
. 10.1002/nme.2087
55.
Schillinger
,
D.
,
Dede
,
L.
,
Scott
,
M. A.
,
Evans
,
J. A.
,
Borden
,
M. J.
,
Rank
,
E.
, and
Hughes
,
T. J. R.
,
2012
, “
An Isogeometric Design-Through-Analysis Methodology Based on Adaptive Hierarchical Refinement of NURBS, Immersed Boundary Methods, and T-Spline CAD Surfaces
,”
Comput. Methods Appl. Mech. Eng.
,
249–252
(
1
), pp.
116
150
. 10.1016/j.cma.2012.03.017
You do not currently have access to this content.