Abstract

Our previous work in the field of formalization, modeling, and design of adaptive training complexes (ATCs) revealed the low accuracy of the traditional expert approach to selecting ATC components. The study addresses the practical scientific problem of classifying and selecting visualization tools and technologies for designing ATC. Currently, this is done using highly subjective expert evaluation. Therefore, we develop a methodology for the selection of visualization tools and technologies to reduce the influence of the human factor by applying a set of main criteria for visualization component evaluation. Classification is based on the facet approach. We create an original technique that allows users to formalize the main objects of a technical system needing a training complex. It allows users to correlate these aspects to the visualization components and to group, evaluate, and rank them. Integration time, use-cost and component visualization quality, training quality, and time are important variables in the methodology. The use of lexicographic optimization methods or linear convolution of criteria is proposed to obtain an optimal solution from the final Pareto-set. The proposed component selection method has several advantages, compared with the classical approach: greater objectivity of the obtained estimates, better development, and further software implementation automation. Thus, this method addressed the problem of choosing the components of ATC visualization. The significance of the study is in the development of the original algorithmic and mathematical software for the method of selecting ATC visualization components.

References

References
1.
Manca
,
D.
,
Brambilla
,
S.
, and
Colombo
,
S.
,
2013
, “
Bridging Between Virtual Reality and Accident Simulation for Training of Process-Industry Operators
,”
Adv. Eng. Software
,
55
, pp.
1
9
. 10.1016/j.advengsoft.2012.09.002
2.
Patle
,
D. S.
,
Ahmad
,
Z.
, and
Rangaiah
,
G. P.
,
2014
, “
Operator Training Simulators in the Chemical Industry: Review, Issues, and Future Directions
,”
Rev. Chem. Eng.
,
30
(
2
), pp.
199
216
. 10.1515/revce-2013-0027
3.
Rothrock
,
L.
,
Koubek
,
R.
, and
Fuchs
,
F.
,
2002
, “
Review and Reappraisal of Adaptive Interfaces: Toward Biologically Inspired Paradigms
,”
Theor. Issues Ergon. Sci.
,
3
(
1
), pp.
47
84
. 10.1080/14639220110110342
4.
Naderpour
,
M.
,
Lu
,
J.
, and
Zhang
,
G.
,
2014
, “
An Intelligent Situation Awareness Support System for Safety-Critical Environments
,”
Decis. Support Syst.
,
59
, pp.
325
340
. 10.1016/j.dss.2014.01.004
5.
Obukhov
,
A. D.
,
Dedov
,
D. L.
, and
Arkhipov
,
A. E.
,
2018,
Development of Structural Model of Adaptive Training Complex in Ergatic Systems for Professional Use
,”
IOP Conference Series: Materials Science and Engineering
,
Tomsk
,
Dec. 4–6
,
327
(
2
), p.
22075
,
IOP Publishing
. 10.1088/1757-899X/327/2/022075
6.
Dedov
,
D.
,
Krasnyanskiy
,
M.
,
Obukhov
,
A.
, and
Arkhipov
,
A.
,
2017
, “
Design and Development of Adaptive Simulators Using 3D Modeling
,”
Int. J. Appl. Eng. Res.
,
12
(
20
), pp.
10415
10422
.
7.
Krasnyanskiy
,
M.
,
Obukhov
,
A.
,
Dedov
,
D.
, and
Siukhin
,
A.
,
2018
, “
Modeling of the Learning Process in Adaptive Training Complexes
,”
J. Appl. Eng. Sci.
,
16
(
4
), pp.
487
493
. 10.5937/jaes16-17627
8.
Bauer
,
J.
, and
Ebert
,
A.
,
2015
, “Mobile Devices for Virtual Reality Interaction. A Survey of Techniques and Metaphors,”
Virtual Realities. Lecture Notes in Computer Science
, Vol.
8844
,
G.
Brunnett
,
S.
Coquillart
,
R.
van Liere
,
G.
Welch
, and
L.
Váša
, eds.,
Springer
,
Cham
, pp.
91
107
.
9.
Puekkцnen
,
P.
, and
Pakkala
,
D.
,
2015
, “
Reference Architecture and Classification of Technologies, Products and Services for Big Data Systems
,”
Big Data Res.
,
2
(
4
), pp.
166
186
. 10.1016/j.bdr.2015.01.001
10.
Samanta
,
S.
, and
Chanda
,
B.
,
2014
, “
Space-Time Facet Model for Human Activity Classification
,”
IEEE Trans. Multimedia
,
16
(
6
), pp.
1525
1535
. 10.1109/tmm.2014.2326734
11.
Tuia
,
D.
,
Flamary
,
R.
, and
Courty
,
N.
,
2015
, “
Multiclass Feature Learning for Hyperspectral Image Classification: Sparse and Hierarchical Solutions
,”
ISPRS J. Photogram. Remote Sensing
,
105
, pp.
272
285
. 10.1016/j.isprsjprs.2015.01.006
12.
Cao
,
D.
,
Ramani
,
K.
,
Fu
,
M. W.
, and
Zhang
,
R.
,
2009
, “
Port-Based Ontology Semantic Similarities for Module Concept Creation
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2
, pp.
141
150
.
13.
Hjoerland
,
B.
,
2013
, “
Facet Analysis: The Logical Approach to Knowledge Organization
,”
Inf. Process. Manage.
,
49
(
2
), pp.
545
557
. 10.1016/j.ipm.2012.10.001
14.
De Bruecker
,
P.
,
Belin
,
J.
,
Van den Bergh
,
J.
, and
Demeulemeester
,
E.
,
2018
, “
A Three-Stage Mixed Integer Programming Approach for Optimizing the Skill Mix and Training Schedules for Aircraft Maintenance
,”
Eur. J. Oper. Res.
,
267
(
2
), pp.
439
452
. 10.1016/j.ejor.2017.11.047
15.
Hua
,
H.
,
2017
, “
Enabling Focus Cues in Head-Mounted Displays
,”
Proc. IEEE
,
105
(
5
), pp.
805
824
. 10.1109/JPROC.2017.2648796
16.
Alfes
,
C. M.
,
Steiner
,
S. L.
, and
Manacci
,
C. F.
,
2015
, “
Critical Care Transport Training: New Strides in Simulating the Austere Environment
,”
Air Med. J.
,
34
(
4
), pp.
186
187
. 10.1016/j.amj.2015.03.006
17.
Kasirzadeh
,
A.
,
Saddoune
,
M.
, and
Soumis
,
F.
,
2017
, “
Airline Crew Scheduling: Models, Algorithms, and Data Sets
,”
EURO J. Transp. Logist.
,
6
(
2
), pp.
111
137
. 10.1007/s13676-015-0080-x
18.
Roberts
,
E.
, and
Beck
,
A.
,
2017
, “
Management and Training Programs of Military Drone Small Unmanned Aircraft Systems
,”
Proc. Hum. Factors Ergon. Soc. Annu. Meet.
,
61
(
1
), pp.
1131
1135
. 10.1177/1541931213601767
19.
Bruzzone
,
A. G.
,
2017
, “
Immersive, Interoperable and Intuitive Mixed Reality for Service in Industrial Plants
,”
Proc. Int. Conf. Model. Appl. Simul.
,
2017
, pp.
208
213
.
20.
Haller
,
A.
,
Putz
,
L. M.
, and
Schauer
,
O.
,
2015
, “
Transshipment Simulators for Training of Ports’ Personnel
,”
Adv. Eng. Forum
,
13
, pp.
277
281
. 10.4028/www.scientific.net/AEF.13.277
21.
Jensen
,
S.
,
2018
, “
Energy-Efficient Operational Training in a Ship Bridge Simulator
,”
J. Cleaner Prod.
,
171
, pp.
175
183
. 10.1016/j.jclepro.2017.10.026
22.
Nazir
,
S.
,
Kluge
,
A.
, and
Manca
,
D.
,
2014
, “
Automation in Process Industry: Cure or Curse? How Can Training Improve Operator’s Performance
,”
Comput. Aided Chem. Eng.
,
33
, pp.
889
894
. 10.1016/B978-0-444-63456-6.50149-6
23.
Nazir
,
S.
, and
Manca
,
D.
,
2015
, “
How a Plant Simulator Can Improve Industrial Safety
,”
Process Safety Progress
,
34
(
3
), pp.
237
243
. 10.1002/prs.11714
24.
Silva
,
M. M.
,
Teixeira
,
J. M. X.
,
Cavalcante
,
P. S.
, and
Teichrieb
,
V.
,
2019
, “
Perspectives on How to Evaluate Augmented Reality Technology Tools for Education: A Systematic Review
,”
J. Braz. Comput. Soc.
,
25
(
1
), pp.
1
18
. 10.1186/s13173-019-0084-8
25.
Hurteau
,
M.
,
Valois
,
P.
, and
Bossiroy
,
A.
,
2011
, “
Jugement Credible en Evaluation de Programme: Definition et Conditions Requises
,”
Can. J. Program Eval.
,
25
(
2
), pp.
83
101
.
26.
Marks
,
G. W.
, and
Steenbergen
,
M.
,
2007
, “
Evaluating Expert Judgements
,”
Eur. J. Polit. Res.
,
46
(
3
), pp.
347
366
. 10.1111/j.1475-6765.2006.00694.x
27.
Kaapu
,
T.
, and
Tiainen
,
T.
,
2010
, “
User Experience: Consumer Understandings of Virtual Product Prototypes
,”
Scandinavian Conference on Information Systems
,
Berlin, Heidelberg
,
Aug. 20–22
,
Springer
, pp.
18
33
.
28.
Kowalski-Trakofler
,
K. M.
,
Vaught
,
C.
, and
Brnich
M. J.
, Jr.
,
2008
, “
Expectations Training for Miners Using Self-Contained Self-Rescuers in Escapes From Underground Coal Mines
,”
J. Occup. Environ. Hyg.
,
5
(
10
), pp.
671
677
. 10.1080/15459620802333632
29.
Shojaei
,
D.
,
2013
, “
Visualization Requirements for 3D Cadastral Systems
,”
Comput. Environ. Urban Syst.
,
41
, pp.
39
54
. 10.1016/j.compenvurbsys.2013.04.003
30.
Zhu
,
E.
,
2014
, “
Augmented Reality in Healthcare Education: An Integrative Review
,”
Peer J.
,
2
, p.
469
. 10.7717/peerj.469
31.
Gupta
,
U.
, and
Kumar Aren
,
M.
,
2013
, “
Neural Network Approach for Software Effort Estimation Using COCOMO-II Model
,”
Int. J. Inform. Technol. Comput. Sci. Perspect.
,
2
(
3
), pp.
619
623
.
32.
Jofri
,
L. N.
,
2016
, “
Non-Verbal Communication Interface Using a Data Glove. Ciencias de la Informбtica y Desarrollos de Investigacion (CACIDI)
,”
IEEE Congreso Argentino de
, pp.
1
6
.
33.
Sehairi
,
K.
,
Benbouchama
,
C.
,
Kobzili
,
E.H.
, and
Chouireb
,
F.
,
2017
, “Real-Time Implementation of Human Action Recognition System Based on Motion Analysis,”
Artificial Intelligence and Computer Vision. Studies in Computational Intelligence
, Vol.
672
,
H.
Lu
, and
Y.
Li
, eds.,
Springer
,
Cham
, pp.
143
164
.
34.
Tzafilkou
,
K.
, and
Protogeros
,
N.
,
2017
, “
Diagnosing User Perception and Acceptance Using Eye Tracking in Web-Based End-User Development
,”
Comput. Human Behav.
,
72
, pp.
23
37
. 10.1016/j.chb.2017.02.035
35.
Yi
,
Y.
,
Cheng
,
Y.
, and
Xu
,
C.
,
2017
, “
Mining Human Movement Evolution for Complex Action Recognition
,”
Expert Syst. Appl.
,
78
, pp.
259
272
. 10.1016/j.eswa.2017.02.020
36.
Steponavièë
,
I.
,
2017
, “
Dynamic Algorithm Selection for Pareto Optimal Set Approximation
,”
J. Global Optim.
,
67
(
1–2
), pp.
263
282
. 10.1007/s10898-016-0420-x
37.
Rentmeesters
,
M. J.
,
Tsai
,
W. K.
, and
Lin
,
K. J.
,
1996
, “
A Theory of Lexicographic Multi-Criteria Optimization
,”
Proceedings of the Second IEEE International Conference on Engineering of Complex Computer Systems
,
Montreal, Quebec
,
Oct. 21–25
, pp.
76
79
.
38.
Sergienko
,
I. V.
, and
Perepelitsa
,
V. A.
,
1987
, “
Finding the Set of Alternatives in Discrete Multicriterion Problems
,”
Cybernetics
,
23
(
5
), pp.
673
683
. 10.1007/BF01074927
You do not currently have access to this content.