Abstract

As a global concern, the sustainability of a product is the responsibility for manufacturing. Product design has become one of the sources and core drivers for manufacturing competition, and the international competitiveness of products would mostly depend on product design capabilities. The product design has essential and profound impacts on the manufacturing, and thus, many researchers focus on product design and make varies of contributions in this area. Product sustainable design is a design process for a product with the consideration of environmental, economic, and social sustainability during the product entire life cycle. The result of product sustainable design is the creation of products with high sustainability of environmental, economic, and social aspects. This paper reviews the state of the art in the product sustainable design methodologies and tools from the perspective of environmental, economic, and social aspects. For the environmental perspective, design for environment methodologies and tools would enable products in a more environmentally friendly manner in the manufacturing. For the economic perspective, this paper introduces the design methodologies for the economic sustainability with cost, assembly, manufacture, and supply chain. For the social perspective, this paper introduces sustainable social design and social responsibility design for social sustainability and social sustainability through social intervention and social innovation. In addition, it encourages future works.

References

References
1.
He
,
B.
,
Song
,
W.
, and
Wang
,
Y.
,
2015
, “
Computational Conceptual Design Using Space Matrix
,”
ASME J. Comput. Inf. Sci. Eng.
,
15
(
1
), p.
011004
. 10.1115/1.4029062
2.
He
,
B.
,
Xue
,
H.
,
Liu
,
L.
,
Pan
,
Q.
,
Tang
,
W.
, and
Ostrosi
,
E.
,
2019
, “
Rigid-Flexible Coupling Virtual Prototyping-Based Approach to the Failure Mode, Effects, and Criticality Analysis
,”
Int. J. Adv. Manuf. Technol.
,
100
(
5–8
), pp.
1695
1717
. 10.1007/s00170-018-2641-2
3.
Kulatunga
,
A. K.
,
Karunatilake
,
N.
,
Weerasinghe
,
N.
, and
Ihalawatta
,
R. K.
,
2015
, “
Sustainable Manufacturing Based Decision Support Model for Product Design and Development Process
,”
Proc. CIRP
,
26
, pp.
87
92
. 10.1016/j.procir.2015.03.004
4.
Brundtland
,
G. H.
,
Khalid
,
M.
, and
Agnelli
,
S.
,
1987
,
Our Common Future
,
Oxford University Press
,
New York
.
5.
Sonego
,
M.
,
Márcia
,
E. S. E.
, and
Debarba
,
H. G.
,
2018
, “
The Role of Modularity in Sustainable Design: A Systematic Review
,”
J. Cleaner Prod.
,
176
, pp.
196
209
. 10.1016/j.jclepro.2017.12.106
6.
Cucuzzella
,
C.
,
2016
, “
Creativity, Sustainable Design and Risk Management
,”
J. Cleaner Prod.
,
135
, pp.
1548
1558
. 10.1016/j.jclepro.2015.12.076
7.
He
,
B.
,
Wang
,
S.
, and
Liu
,
Y. J.
,
2019
, “
Underactuated Robotics: A Review
,”
Int. J. Adv. Rob. Syst.
,
16
(
4
), pp.
1
29
. 10.1177/1729881419862164
8.
Lofthouse
,
V.
, and
Bhamra
,
T.
,
2012
,
Design for Sustainability: A Practical Approach
,
Gower Publishing
,
Aldershot, UK
.
9.
Skerlos
,
S. J.
,
2015
, “
Promoting Effectiveness in Sustainable Design
,”
Proc. CIRP
,
29
, pp.
13
18
. 10.1016/j.procir.2015.02.080
10.
Zhang
,
H. C.
,
Kuo
,
T. C.
,
Lu
,
H.
, and
Huang
,
S. H.
,
1997
, “
Environmentally Conscious Design and Manufacturing: A State-of-the-Art Survey
,”
J. Manuf. Syst.
,
16
(
5
), pp.
352
371
. 10.1016/S0278-6125(97)88465-8
11.
Guo
,
J.
, and
Sun
,
C.
,
2003
, “
Measurement Models for Survivability and Competitiveness of Very Large E-Marketplace
,”
International Conference on Computational Science: Part II
,
New York
,
June 2–4
.
12.
Gu
,
P.
,
Xue
,
D.
, and
Chen
,
Y.
,
2011
, “General Adaptable Product Design,”
Global Product Development
,
Springer
,
Berlin, Heidelberg
, pp.
27
40
.
13.
Engel
,
A.
,
Browning
,
T. R.
, and
Reich
,
Y.
,
2016
, “
Designing Products for Adaptability: Insights From Four Industrial Cases
,”
Decis. Sci.
,
48
(
5
), pp.
875
917
. 10.1111/deci.12254
14.
Bergmann
,
J. H. M.
,
Noble
,
A.
, and
Thompson
,
M.
,
2015
, “
Why Is Designing for Developing Countries More Challenging? Modelling the Product Design Domain for Medical Devices
,”
Procedia Manuf.
,
3
, pp.
5693
5698
. 10.1016/j.promfg.2015.07.792
15.
Soo
,
C. S.
,
2010
, “
Product Life Cycle Theory and the Maturation of the Internet
,”
NW Univ. Law Rev.
,
104
(
2
), pp.
641
670
.
16.
Wen
,
F.
,
Vazhayil
,
J. P.
,
Sharma
,
V. K.
, and
Balasubramanian
,
R.
,
2011
, “
A Framework for Equitable Apportionment of Emission Reduction Commitments to Mitigate Global Warming
,”
Int. J. Energy Sect. Manage.
,
5
(
3
), pp.
381
406
. 10.1108/17506221111169881
17.
Andriopoulos
,
C.
, and
Lewis
,
M. W.
,
2009
, “
Exploitation-Exploration Tensions and Organizational Ambidexterity: Managing Paradoxes of Innovation
,”
Organ. Sci.
,
20
(
4
), pp.
696
717
. 10.1287/orsc.1080.0406
18.
Gungor
,
A.
, and
Gupta
,
S. M.
,
1999
, “
Issues in Environmentally Conscious Manufacturing and Product Recovery: A Survey
,”
Comput. Ind. Eng.
,
36
(
4
), pp.
811
853
. 10.1016/S0360-8352(99)00167-9
19.
He
,
B.
,
Luo
,
T.
, and
Huang
,
S.
,
2009
, “
Product Sustainability Assessment for Product Life Cycle
,”
J. Cleaner Prod.
,
206
, pp.
238
250
. 10.1016/j.jclepro.2018.09.097
20.
He
,
B.
,
Pan
,
Q. J.
, and
Deng
,
Z. Q.
,
2018
, “
Product Carbon Footprint for Product Life Cycle Under Uncertainty
,”
J. Cleaner Prod.
,
187
, pp.
549
472
. 10.1016/j.jclepro.2018.03.246
21.
Masui
,
K.
,
Sakao
,
T.
,
Kobayashi
,
M.
, and
Inaba
,
A.
,
2003
, “
Applying Quality Function Deployment to Environmentally Conscious Design
,”
Int. J. Qual. Reliab. Manage.
,
20
(
1
), pp.
90
106
. 10.1108/02656710310453836
22.
Allen
,
D. T.
,
Shonnard
,
D. R.
, and
Hall
,
P.
,
2010
, “
Green Engineering: Environmentally Conscious Design of Chemical Processes
,”
AIChE J.
,
47
(
9
), pp.
1906
1910
. 10.1002/aic.690470902
23.
Vinodh
,
S.
, and
Manjunatheshwara
,
K. J.
,
2017
, “Application of Fuzzy QFD for Environmentally Conscious Design of Mobile Phones,”
Green and Lean Management
.
Springer International Publishing
,
Switzerland
.
24.
Ilgin
,
M. A.
, and
Gupta
,
S. M.
,
2010
, “
Environmentally Conscious Manufacturing and Product Recovery (Ecmpro): A Review of the State of the Art
,”
J. Environ. Manage.
,
91
(
3
), pp.
563
591
. 10.1016/j.jenvman.2009.09.037
25.
Gupta
,
S. M.
, and
Lambert
,
A. F.
, eds.,
2007
,
Environment Conscious Manufacturing
,
CRC Press
,
Boca Raton, FL
.
26.
He
,
B.
,
Shao
,
Y.
,
Wang
,
S.
,
Gu
,
Z.
, and
Bai
,
K.
,
2019
, “
Product Environmental Footprints Assessment for Product Life Cycle
,”
J. Cleaner Prod.
,
233
, pp.
446
460
. 10.1016/j.jclepro.2019.06.078
27.
Fiksel
,
J.
, and
Wapman
,
K.
,
1994
, “
How to Design for Environment and Minimize Life Cycle Cost
,”
IEEE International Symposium on Electronics & the Environment
,
San Francisco, CA
,
May 2–4
.
28.
Giudice
,
F.
,
La Rosa
,
G.
, and
Risitano
,
A.
,
2006
,
Product Design for the Environment: A Life Cycle Approach
,
CRC Press
,
Boca Raton, FL
.
29.
González
,
B.
, and
Adenso-Díaz
,
B.
,
2005
, “
A Bill of Materials-Based Approach for End-of-Life Decision Making in Design for the Environment
,”
Int. J. Prod. Res.
,
43
(
10
), pp.
2071
2099
. 10.1080/00207540412331333423
30.
Grote
,
C. A.
,
Jones
,
R. M.
,
Blount
,
G. N.
,
Goodyer
,
J.
, and
Shayler
,
M.
,
2007
, “
An Approach to the EuP Directive and the Application of the Economic Eco-Design for Complex Products
,”
Int. J. Prod. Res.
,
45
(
18–19
), pp.
4099
4117
. 10.1080/00207540701450088
31.
Huisman
,
J.
,
Boks
,
C. B.
, and
Stevels
,
A. L. N.
,
2003
, “
Quotes for Environmentally Weighted Recyclability (QWERTY): Concept of Describing Product Recyclability in Terms of Environmental Value
,”
Int. J. Prod. Res.
,
41
(
16
), pp.
3649
3665
. 10.1080/0020754031000120069
32.
Jawahir
,
I. S.
,
Rouch
,
K. E.
,
Dillon
,
O. W.
,
Holloway
,
L.
, and
Hall
,
A.
,
2007
, “
Design for Sustainability(DFS): New Challenges in Developing and Implementing a Curriculum for Next Generation Design and Manufacturing Engineers
,”
Int. J. Eng. Educ.
,
23
(
6
), pp.
1053
1064
.
33.
Gehin
,
A.
,
Zwolinski
,
P.
, and
Brissaud
,
D.
,
2008
, “
A Tool to Implement Sustainable End-of-Life Strategies in the Product Development Phase
,”
J. Cleaner Prod.
,
16
(
5
), pp.
566
576
. 10.1016/j.jclepro.2007.02.012
34.
Harris
,
P. A.
,
Taylor
,
R.
,
Thielke
,
R.
,
Payne
,
J.
,
Gonzalez
,
N.
, and
Conde
,
J. G.
,
2009
, “
Research Electronic Data Capture (REDCap)—A Metadata-Driven Methodology and Workflow Process for Providing Translational Research Informatics Support
,”
J. Biomed. Inform.
,
42
(
2
), pp.
377
381
. 10.1016/j.jbi.2008.08.010
35.
Cartwright
,
S.
,
2012
,
Pre-Production Planning for Video, Film, and Multimedia
,
Focal Press
,
Waltham, MA
.
36.
Boothroyd
,
G.
,
Dewhurst
,
P.
, and
Knight
,
W. A.
,
2001
,
Product Design for Manufacture and Assembly, Revised and Expanded
,
CRC Press
,
Boca Raton, FL
.
37.
Faux
,
I. D.
, and
Pratt
,
M. J.
,
1979
,
Computational Geometry for Design and Manufacture
,
Horwood
,
Chichester
.
38.
Boyce
,
D. E.
, and
Janson
,
B. N.
,
1980
, “
A Discrete Transportation Network Design Problem With Combined Trip Distribution and Assignment
,”
Transport. Res. B Meth.
,
14
(
1
), pp.
147
154
. 10.1016/0191-2615(80)90040-5
39.
Stone
,
G. C.
,
Boulter
,
E. A.
,
Culbert
,
I.
, and
Dhirani
,
H.
,
2004
,
Electrical Insulation for Rotating Machines-Design, Evaluation, Aging, Testing, and Repair—Book Review
,
IEEE Press
,
Piscataway, NJ
.
40.
Tipnis
,
V. A.
,
1993
, “
Evolving Issues in Product Life Cycle Design: (How to Design Products That Are Environmentally Safe to Manufacture/Assemble, Distribute, Use, Service/Repair, Discard/Collect, Disassemble, Recycle/Recover, and Dispose?)
,”
CIRP Ann. Manuf. Technol.
,
42
(
1
), pp.
169
173
. 10.1016/S0007-8506(07)62418-4
41.
Tan
,
S.
,
Zeng
,
Y.
,
Chen
,
B.
,
Bani Milhim
,
H. K.
, and
Schiffauerova
,
A.
,
2012
, “
Environment Based Design Approach to Integrating Enterprise Applications
,”
ASME J. Comput. Inf. Sci. Eng.
,
12
(
3
), p.
031003
. 10.1115/1.4007171
42.
Low
,
J. S. C.
,
Lu
,
W. F.
, and
Song
,
B.
,
2014
, “
Methodology for an Integrated Life Cycle Approach to Design for Environment
,”
Key Eng. Mater.
,
572
(
1
), pp.
20
23
. 10.4028/www.scientific.net/KEM.572.20
43.
Giudice
,
F.
,
Rosa
,
G. L.
, and
Risitano
,
A.
,
2005
, “
Materials Selection in the Life-Cycle Design Process: A Method to Integrate Mechanical and Environmental Performances in Optimal Choice
,”
Mater. Des.
,
26
(
1
), pp.
9
20
. 10.1016/j.matdes.2004.04.006
44.
He
,
B.
,
Xiao
,
J. L.
, and
Deng
,
Z. Q.
,
2018
, “
Product Design Evaluation for Product Environmental Footprint
,”
J. Cleaner Prod.
,
172
, pp.
3066
3080
. 10.1016/j.jclepro.2017.11.104
45.
He
,
B.
, and
Gu
,
Z.
,
2016
, “
Sustainable Design Synthesis for Product Environmental Footprints
,”
Des. Stud.
,
45
, pp.
159
186
. 10.1016/j.destud.2016.04.001
46.
He
,
B.
,
Tang
,
W.
,
Wang
,
J.
,
Huang
,
S.
,
Deng
,
Z.
, and
Wang
,
Y.
,
2015
, “
Low-Carbon Conceptual Design Based on Product Life Cycle Assessment
,”
Int. J. Adv. Manuf. Technol.
,
81
(
5–8
), pp.
863
874
. 10.1007/s00170-015-7253-5
47.
He
,
B.
,
Wang
,
J.
,
Huang
,
S.
, and
Wang
,
Y.
,
2015
, “
Low-Carbon Product Design for Product Life Cycle
,”
J. Eng. Des.
,
26
(
10–12
), pp.
321
339
. 10.1080/09544828.2015.1053437
48.
He
,
B.
,
Huang
,
S.
, and
Wang
,
J.
,
2015
, “
Product Low-Carbon Design Using Dynamic Programming Algorithm
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
2
(
1
), pp.
37
42
. 10.1007/s40684-015-0005-z
49.
He
,
B.
,
Zhou
,
G.
,
Hou
,
S.
, and
Zeng
,
L.
,
2017
, “
An Approach to Computational Co-Evolutionary Product Design
,”
Int. J. Adv. Manuf. Technol.
,
90
(
1–4
), pp.
249
265
. 10.1007/s00170-016-9295-8
50.
He
,
B.
,
Niu
,
Y. C.
,
Hou
,
S. C.
, and
Li
,
F. F.
,
2018
, “
Sustainable Design From Functional Domain to Physical Domain
,”
J. Cleaner Prod.
,
197
, pp.
1296
1306
. 10.1016/j.jclepro.2018.06.249
51.
He
,
B.
,
Tang
,
W.
,
Huang
,
S.
,
Hou
,
S.
, and
Cai
,
H.
,
2016
, “
Towards Low-Carbon Product Architecture Using Structural Optimization for Lightweight
,”
Int. J. Adv. Manuf. Technol.
,
83
(
5–8
), pp.
1419
1429
. 10.1007/s00170-015-7676-z
52.
He
,
B.
,
Deng
,
Z.
,
Huang
,
S.
, and
Wang
,
J.
,
2015
, “
Application of Unascertained Number for the Integration of Carbon Footprint in Conceptual Design
,”
Proc. Inst. Mech. Eng., Part B
,
229
(
11
), pp.
2088
2092
. 10.1177/0954405414539495
53.
He
,
B.
, and
Hua
,
Y.
,
2017
, “
Feature-Based Integrated Product Model for Low-Carbon Conceptual Design
,”
J. Eng. Des.
,
28
(
6
), pp.
408
432
. 10.1080/09544828.2017.1316833
54.
He
,
B.
,
Wang
,
J.
, and
Deng
,
Z.
,
2015
, “
Cost-Constrained Low-Carbon Product Design
,”
Int. J. Adv. Manuf. Technol.
,
79
(
9–12
), pp.
1821
1828
. 10.1007/s00170-015-6947-z
55.
Anand
,
S.
, and
Sen
,
A.
,
2000
, “
Human Development and Economic Sustainability
,”
World Dev.
,
28
(
12
), pp.
2029
2049
. 10.1016/S0305-750X(00)00071-1
56.
Hamrin
,
R. D.
,
1983
,
A Renewable Resource Economy
,
Praeger
,
New York
.
57.
Chen
,
X. C.
,
Liu
,
X. B.
, and
Feng
,
X. A.
,
2001
, “
The Life Cycle Cost and Its Estimation Framework in Design For Cost (DFC)
,”
China Mech. Eng.
,
12
(
5
), pp.
510
514
.
58.
Sheldon
,
D. F.
,
Huang
,
G. Q.
, and
Perks
,
R.
,
1991
, “
Design for Cost: Past Experience and Recent Development
,”
J. Eng. Des.
,
2
(
2
), pp.
127
139
. 10.1080/09544829108901676
59.
Durairaj
,
S. K.
,
Ong
,
S. K.
,
Nee
,
A. Y. C.
, and
Tan
,
R. B. H.
,
2002
, “
Evaluation of Life Cycle Cost Analysis Methodologies
,”
Corporate Environ. Strategy
,
9
(
1
), pp.
30
39
. 10.1016/S1066-7938(01)00141-5
60.
Costi
,
P.
,
Minciardi
,
R.
,
Robba
,
M.
,
Rovatti
,
M.
, and
Sacile
,
R.
,
2004
, “
An Environmentally Sustainable Decision Model for Urban Solid Waste Management
,”
Waste Manage.
,
24
(
3
), pp.
169
249
. 10.1016/S0956-053X(03)00126-0
61.
Babashamsi
,
P.
,
Yusoff
,
N. I. M.
,
Ceylan
,
H.
,
Nor
,
N. G. M.
, and
Jenatabadi
,
H. S.
,
2016
, “
Evaluation of Pavement Life Cycle Cost Analysis: Review and Analysis
,”
Int. J. Pavement Res. Technol.
,
9
(
4
), pp.
241
254
. 10.1016/j.ijprt.2016.08.004
62.
Laperriere
,
L.
, and
ElMaraghy
,
H. A.
,
1992
, “
Planning of Products Assembly and Disassembly
,”
CIRP Ann. Manuf. Technol.
,
41
(
1
), pp.
5
9
. 10.1016/S0007-8506(07)61141-X
63.
Boothroyd
,
G.
,
2014
, “
Product Design for Manufacture and Assembly
,”
Comput. Aided Des.
,
26
(
7
), pp.
505
520
. 10.1016/0010-4485(94)90082-5
64.
El-Nounu
,
A. R.
,
Popov
,
A.
, and
Ratchev
,
S.
,
2018
, “
Redesign Methodology for Mechanical Assembly
,”
Res. Eng. Des.
,
29
(
1
), pp.
107
122
. 10.1007/s00163-017-0255-6
65.
Murali
,
G. B.
,
Deepak
,
B. B. V. L.
,
Biswal
,
B. B.
, and
Khamari
,
B. K.
,
2019
, “Integrated Design for Assembly Approach Using Ant Colony Optimization Algorithm for Optimal Assembly Sequence Planning,”
Computational Intelligence in Data Mining
,
Springer
,
Singapore
, pp.
249
259
.
66.
Warnecke
,
H. J.
, and
Baessler
,
R.
,
1988
, “
Design for Assembly Part of the Design Process
,”
Ann. CIRP
,
37
(
1
), pp.
1
4
. 10.1016/S0007-8506(07)61572-8
67.
Hsu
,
H. Y.
, and
Lin
,
G. C. I.
,
2002
, “
Quantitative Measurement of Component Accessibility and Product Assemblability for Design for Assembly Application
,”
Robot. Comput. Integr. Manuf.
,
18
(
1
), pp.
13
27
. 10.1016/S0736-5845(01)00020-5
68.
Stoll
,
H. W.
,
1986
, “
Design for Manufacture: An Overview
,”
ASME Appl. Mech. Rev.
,
39
(
9
), pp.
1356
1364
. 10.1115/1.3149526
69.
Hazony
,
Y.
,
2007
,
Design for Manufacturing. Handbook of Design, Manufacturing and Automation
,
John Wiley & Sons, Inc
.,
New York
.
70.
Ulrich
,
K.
,
Sartorius
,
D.
,
Pearson
,
S.
, and
Jakiela
,
P. M.
,
1993
, “
Including the Value of Time in Design-for-Manufacturing Decision Making
,”
Manage. Sci.
,
39
(
4
), pp.
429
447
. 10.1287/mnsc.39.4.429
71.
Serrano
,
D.
,
1991
, “
Automatic Dimensioning in Design for Manufacturing
,”
ACM Symposium on Solid Modeling Foundations & CAD/CAM Applications
,
Austin, TX
,
June 5–7
.
72.
Giachetti
,
R. E.
,
1999
, “
A Standard Manufacturing Information Model to Support Design for Manufacturing in Virtual Enterprises
,”
J. Int. Manuf.
,
10
(
1
), pp.
49
60
. 10.1023/A:1008916530350
73.
Chiu
,
M. C.
, and
Okudan
,
G.
,
2014
, “
An Investigation on the Impact of Product Modularity Level on Supply Chain Performance Metrics: An Industrial Case Study
,”
J. Intell. Manuf.
,
25
(
1
), pp.
129
145
. 10.1007/s10845-012-0680-3
74.
Arnette
,
A. N.
,
Brewer
,
B. L.
,
Choal
,
T.
,
Arnette
,
A. N.
,
Brewer
,
B. L.
, and
Choal
,
T.
,
2014
, “
Design for Sustainability (DFS): The Intersection of Supply Chain and Environment
,”
J. Cleaner Prod.
,
83
(
83
), pp.
374
390
. 10.1016/j.jclepro.2014.07.021
75.
Lee
,
H. L.
, and
Billington
,
C.
,
1992
, “
Managing Supply Chain Inventory: Pitfalls and Opportunities
,”
Sloan Manage. Rev.
,
33
(
3
), pp.
65
73
.
76.
Huang
,
Y.
, and
Huang
,
C.
,
2016
, “
Research on Relationships Among Institutional Pressure, Stewardship Behavior, Green Supply Chain Management, and Organizational Performance: The Case of Electrical and Electronics Industries in Taiwan
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041010
. 10.1115/1.4033435
77.
Fandel
,
G.
, and
Stammen
,
M.
,
2004
, “
A General Model for Extended Strategic Supply Chain Management With Emphasis on Product Life Cycles Including Development and Recycling
,”
Int. J. Prod. Econ.
,
89
(
3
), pp.
293
308
. 10.1016/S0925-5273(03)00198-1
78.
Lamothe
,
J.
,
Hadj-Hamou
,
K.
, and
Aldanondo
,
M.
,
2006
, “
An Optimization Model for Selecting a Product Family and Designing Its Supply Chain
,”
Eur. J. Oper. Res.
,
169
(
3
), pp.
1030
1047
. 10.1016/j.ejor.2005.02.007
79.
Claypool
,
E.
,
Norman
,
B. A.
, and
Needy
,
L. S.
,
2014
, “
Modeling Risk in a Design for Supply Chain Problem
,”
Comput. Ind. Eng.
,
78
, pp.
44
54
. 10.1016/j.cie.2014.09.026
80.
Lee
,
H. L.
, and
Billington
,
C.
,
1995
, “
The Evolution of Supply-Chain-Management Models and Practice at Hewlett-Packard
,”
Interfaces
,
25
(
5
), pp.
42
63
. 10.1287/inte.25.5.42
81.
Graves
,
S. C.
, and
Willems
,
S. P.
,
2005
, “
Optimizing the Supply Chain Configuration for New Products
,”
Manage. Sci.
,
51
(
8
), pp.
1165
1180
. 10.1287/mnsc.1050.0367
82.
Zhang
,
X.
,
Huang
,
G. Q.
, and
Rungtusanatham
,
M. J.
,
2008
, “
Simultaneous Configuration of Platform Products and Manufacturing Supply Chains
,”
Int. J. Prod. Res.
,
46
(
21
), pp.
6137
6162
. 10.1080/00207540701324150
83.
Yadav
,
S. R.
,
Mishra
,
N.
,
Kumar
,
V.
, and
Tiwari
,
M. K.
,
2011
, “
A Framework for Designing Robust Supply Chains Considering Product Development Issues
,”
Int. J. Prod. Res.
,
49
(
20
), pp.
6065
6088
. 10.1080/00207543.2010.524258
84.
Chaabane
,
A.
,
Ramudhin
,
A.
, and
Paquet
,
M.
,
2012
, “
Design of Sustainable Supply Chains Under the Emission Trading Scheme
,”
Int. J. Prod. Econ.
,
135
(
1
), pp.
37
49
. 10.1016/j.ijpe.2010.10.025
85.
Lee
,
H.
, and
Sasser
,
M.
,
1995
, “
Product Universality and Design for Supply Chain Management
,”
Prod. Plan. Control
,
6
(
3
), pp.
270
277
. 10.1080/09537289508930279
86.
Martin
,
J. P.
,
2001
, “
The Social Dimensions of Sustainable Development
,”
Proceedings of the European Social Agenda and EU International Partners
,
Brussels, Belgium
,
Nov. 20–21
, Vol.
2021
, p.
94
.
87.
Black
,
A. W.
,
2004
, “
The Quest for Sustainable, Healthy Communities
,”
Aust. J. Environ. Educ.
,
20
(
1
), pp.
33
44
. 10.1017/S0814062600002287
88.
Paranagamage
,
P.
,
2013
, “
Learning to Design for Social Sustainability Through the Synthesis of Two Approaches
,” http://eprints.lincoln.ac.uk/12990/
89.
Calvo
,
M.
, and
Rosa
,
A. D.
,
2017
, “
Design for Social Sustainability. A Reflection on the Role of the Physical Realm in Facilitating Community Co-Design
,”
Des. J.
,
20
(
suppl 1
), pp.
1705
1724
. 10.1080/14606925.2017.1352694
90.
Missimer
,
M.
,
2015
, “
Social Sustainability Within the Framework for Strategic Sustainable Development
,”
Doctoral dissertation
,
Blekinge Tekniska Högskola
,
Karlskrona, Sweden
.
91.
Wever
,
R.
,
Van Kuijk
,
J.
, and
Boks
,
C.
,
2008
, “
User-Centred Design for Sustainable Behavior
,”
Int. J. Sustain. Eng.
,
1
(
1
), pp.
9
20
. 10.1080/19397030802166205
92.
De Medeiros
,
J. F.
,
Da Rocha
,
C. G.
, and
Ribeiro
,
J. L. D.
,
2018
, “
Design for Sustainable Behavior (DfSB): Analysis of Existing Frameworks of Behavior Change Strategies, Experts’ Assessment and Proposal for a Decision Support Diagram
,”
J. Cleaner Prod.
,
188
, pp.
402
415
. 10.1016/j.jclepro.2018.03.272
93.
Vredenburg
,
K.
,
Mao
,
J. Y.
,
Smith
,
P. W.
, and
Carey
,
T.
,
2002
, “
A Survey of User-Centered Design Practice
,”
Proceeding of SIGCHI Conference on Human Factors in Computing Systems
,
New York
,
Apr. 20–25
,
ACM
,
New York
, pp.
471
478
.
94.
Norman
,
D. A.
, and
Draper
,
S. W.
,
1986
,
User Centered System Design: New Perspectives on Human-Computer Interaction
,
CRC Press
.
95.
Vredenberg
,
K.
,
Isensee
,
S.
, and
Righi
,
C.
,
2001
,
User-Centered Design: An Integrated Approach With CDROM
,
Prentice Hall PTR
,
Englewood Cliffs, NJ
.
96.
Afshari
,
H.
,
Peng
,
Q.
, and
Gu
,
P.
,
2016
, “
Design Optimization for Sustainable Products Under Users’ Preference Changes
,”
ASME J. Comput. Inf. Sci. Eng.
,
16
(
4
), p.
041001
. 10.1115/1.4033234
97.
Rooden
,
M. J.
, and
Kanis
,
H.
,
1995
, “
Anticipation of Usability Problems by Practitioners
,”
Proceedings of the Human Factors and Ergonomics Society Annual Meeting Proceedings
,
San Diego, CA
,
Oct. 9–13
, Vol.
44
(
38
), pp.
941
944
.
98.
Henderson
,
A.
,
2002
,
Interaction Design: Beyond Human-Computer Interaction
,
ACM
,
New York
.
99.
Ma
,
K.
, and
Qi
,
Z.
,
2017
, “
A Human-Centered Design of General-Purpose Unmanned Electric Vehicle Chassis for Agriculture Task Payload
,”
ASME J. Comput. Inf. Sci. Eng.
,
17
(
3
), p.
031004
. 10.1115/1.4034740
100.
Daae
,
J.
, and
Boks
,
C.
,
2014
, “
A Classification of User Research Methods for Design for Sustainable Behaviour
,”
J. Cleaner Prod.
,
106
, pp.
680
689
. 10.1016/j.jclepro.2014.04.056
101.
Klöckner
,
C. A.
,
2013
, “
Comprehensive Model of the Psychology of Environmental Behavior—A Meta-Analysis
,”
Global Enviorn. Change
,
23
(
5
), pp.
1028
1038
. 10.1016/j.gloenvcha.2013.05.014
102.
Bamberg
,
S.
, and
Möser
,
G.
,
2007
, “
Twenty Years After Hines, Hungerford, and Tomera: A New Meta-Analysis of Psycho-Social Determinants of Pro-Environmental Behaviour
,”
J. Environ. Psychol.
,
27
(
1
), pp.
14
25
. 10.1016/j.jenvp.2006.12.002
103.
Triandis
,
H. C.
,
1979
, “Values, Attitudes, and Interpersonal Behavior,”
Nebraska Symposium on Motivation
,
University of Nebraska Press
,
Nebraska
.
104.
Frey
,
B. S.
,
1988
, “
Ipsative and Objective Limits to Human Behavior
,”
J. Behav. Econ.
,
17
(
4
), pp.
229
248
. 10.1016/0090-5720(88)90012-5
105.
KlöCkner
,
C. A.
, and
BlöBaum
,
A.
,
2010
, “
A Comprehensive Action Determination Model: Toward a Broader Understanding of Ecological Behaviour Using the Example of Travel Mode Choice
,”
J. Environ. Psychol.
,
30
(
4
), pp.
574
586
. 10.1016/j.jenvp.2010.03.001
106.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2011
, “
Encouraging Environmentally Conscious Behaviour Through Product Design: The Principle of Discretization
,”
ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Washington
,
Aug. 28–31
, pp.
45
54
.
107.
Holm
,
I.
,
2006
,
Ideas and Beliefs in Architecture and Industrial Design: How Attitudes, Orientations, and Underlying Assumptions Shape the Built Environment
,
Oslo School of Architecture and Design
,
Oslo, Norway
.
108.
Papanek
,
V.
,
1984
,
Design for the Real World
,
Academy Chicago Publishers
,
Chicago, IL
,
Completely Revised Second Edition
.
109.
Meroni
,
A.
, and
Sangiorgi
,
D.
,
2011
,
Design for Services
,
Gower Publishing
,
Farnham
.
110.
Tracy
,
B.
, and
Vicky
,
L.
,
2007
,
Design for Sustainability-A Practical Approach
,
Gower Publshing
,
England
.
111.
Caroline
,
L.
, and
Andrew
,
B.
,
2017
,
Design Against Crime: A Human-centred Approach to Designing for Safety and Security
,
Routledge
,
Oxford
.
112.
Emmanuel
,
T.
, and
Rachel
,
C.
,
2017
,
Design for Health
,
Taylor & Francis
.
113.
Kuksa
,
I.
, and
Fisher
,
T.
,
2017
,
Design for Personalisation
,
Routledge
,
London
.
114.
Bason
,
C.
,
2016
,
Design for Policy
,
Routledge
,
London
.
115.
Tovey
,
M.
,
2012
,
Design for Transport
,
Routledge
,
London
.
116.
Melles
,
G.
,
De Vere
,
I.
, and
Misic
,
V.
,
2011
, “
Socially Responsible Design: Thinking Beyond the Triple Bottom Line to Socially Responsive and Sustainable Product Design
,”
CoDesign
,
7
(
3–4
), pp.
143
154
. 10.1080/15710882.2011.630473
117.
Cooper
,
R.
, and
Salford
,
U. O.
,
2010
, “
Ethics and Altruism: What Constitutes Socially Responsible Design?
,”
Des. Manage. Rev.
,
16
(
3
), pp.
10
18
. 10.1111/j.1948-7169.2005.tb00197.x
118.
Dearden
,
A.
,
Dunckley
,
L.
,
Best
,
M.
,
Dray
,
S.
,
Light
,
A.
, and
Thomas
,
J.
,
2007
, “
Socially Responsible Design in the Context of International Development
,”
IFIP TC 13 International Conference on Human-Computer Interaction
,
New York
,
Sept. 10–14
.
119.
Koo
,
Y.
, and
Cooper
,
R.
,
2016
, “
What Drives Socially Responsible Design in Organizations? Empirical Evidence From South Korea
,”
Des. J.
,
19
(
6
), pp.
879
901
. 10.1080/14606925.2016.1216211
120.
Er
,
Ö.
, and
Çiğdem
,
K.
,
2008
, “
Problems or Opportunities?: Overcoming the Mental Barrier for Socially Responsible Design in Turkey
,”
Des. J.
,
11
(
2
), pp.
159
181
. 10.2752/175630608X329235
121.
Arikan
,
E.
,
Kantur
,
D.
,
Maden
,
C.
, and
Telci
,
E. E.
,
2014
, “
Investigating the Mediating Role of Corporate Reputation on the Relationship Between Corporate Social Responsibility and Multiple Stakeholder Outcomes
,”
Qual. Quant.
,
50
(
1
), pp.
129
149
. 10.1007/s11135-014-0141-5
122.
Ramlall
,
S.
,
2012
, “
Corporate Social Responsibility in Post-Apartheid South Africa
,”
Soc. Responsib. J.
,
8
(
2
), pp.
270
288
. 10.1108/17471111211234888
123.
Katamba
,
D.
,
Kazooba
,
C. T.
,
Mpisi
,
S. B.
,
Nkiko
,
C. M.
,
Nabatanzimuyimba
,
A. K.
, and
Kekaramu
,
J. H.
,
2013
, “
Corporate Social Responsibility Management in Uganda
,”
Int. J. Soc. Econ.
,
39
(
6
), pp.
375
390
. 10.1108/03068291211224892
124.
Srivastava
,
J.
, and
Shu
,
L. H.
,
2012
, “Designing Products to Encourage Conservation: Applying the Discretization Principle,”
Leveraging Technology for a Sustainable World
,
Springer
,
Berlin, Heidelberg
, pp.
569
574
.
125.
Steg
,
L.
, and
Vlek
,
C.
,
2009
, “
Encouraging Pro-Environmental Behaviour: An Integrative Review and Research Agenda
,”
J. Environ. Psychol.
,
29
(
3
), pp.
309
317
. 10.1016/j.jenvp.2008.10.004
126.
Geller
,
E. S.
,
2002
, “
The Challenge of Increasing Proenvironment Behavior
,”
Handbook of Environmental Psychology
, 2, pp.
525
540
.
127.
Winett
,
R. A.
,
Hatcher
,
J. W.
,
Fort
,
T. R.
,
Leckliter
,
I. N.
,
Love
,
S. Q.
,
Riley
,
A. W.
, and
Fishback
,
J. F.
,
1982
, “
The Effects of Videotape Modeling and Daily Feedback on Residential Electricity Conservation, Home Temperature and Humidity, Perceived Comfort, and Clothing Worn: Winter and Summer
,”
J. Appl. Behav. Anal.
,
15
(
3
), pp.
381
402
. 10.1901/jaba.1982.15-381
128.
Harrigan
,
M.
,
1994
, “
Can We Transform the Market Without Transforming the Customer?
,”
Home Energy
,
11
(
1
), p.
450727
.
129.
Fischer
,
C.
,
2008
, “
Feedback on Household Electricity Consumption: A Tool for Saving Energy?
,”
Energy Effic.
,
1
(
1
), pp.
79
104
. 10.1007/s12053-008-9009-7
130.
Duflou
,
J. R.
,
Sutherland
,
J. W.
,
Dornfeld
,
D.
,
Herrmann
,
C.
,
Jeswiet
,
J.
,
Kara
,
S.
,
Hauschild
,
M.
, and
Kellens
,
K.
,
2012
, “
Towards Energy and Resource Efficient Manufacturing: A Processes and Systems Approach
,”
CIRP Ann. Manuf. Technol.
,
61
(
2
), pp.
587
609
. 10.1016/j.cirp.2012.05.002
131.
McCalley
,
L. T.
,
de Vries
,
P. W.
, and
Midden
,
C. J.
,
2011
, “
Consumer Response to Product-Integrated Energy Feedback: Behavior, Goal Level Shifts, and Energy Conservation
,”
Environ. Behav.
,
43
(
4
), pp.
525
545
. 10.1177/0013916510371053
132.
Foster
,
D.
,
Lawson
,
S.
,
Wardman
,
J.
,
Blythe
,
M.
, and
Linehan
,
C.
,
2012
, “
Watts in It for Me?: Design Implications for Implementing Effective Energy Interventions in Organisations
,”
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems
,
New York
,
May 5–10
,
ACM
,
New York
, pp.
2357
2366
.
133.
Michie
,
S.
,
Van Stralen
,
M. M.
, and
West
,
R.
,
2011
, “
The Behaviour Change Wheel: A New Method for Characterising and Designing Behaviour Change Interventions
,”
Implement. Sci.
,
6
(
1
), p.
42
. 10.1186/1748-5908-6-42
134.
Murray
,
R.
,
Caulier-Grice
,
J.
, and
Mulgan
,
G.
,
2010
,
The Open Book of Social Innovation
,
Young Foundation, NESTA
,
London
.
135.
Hillgren
,
P. A.
,
Seravalli
,
A.
, and
Emilson
,
A.
,
2011
, “
Prototyping and Infrastructuring in Design for Social Innovation
,”
CoDesign
,
7
(
3–4
), pp.
169
183
. 10.1080/15710882.2011.630474
136.
Mulgan
,
G.
,
2006
,
Social Innovation: What Is It, Why It Matters and How It Can Be Accelerated
,
Young Foundation
,
London
.
137.
Burns
,
C.
,
Cottam
,
H.
,
Vanstone
,
C.
, and
Winhall
,
J.
,
2006
, “
RED Paper 02: Transformation Design
.”
138.
Hartswood
,
M.
,
Procter
,
R.
,
Rouncefield
,
M.
, and
Sharpe
,
M.
,
2000
, “
Being There and Doing IT in the Workplace: A Case Study of a Co-Development Approach in Healthcare
,”
Proceedings of the Participatory Design Conference
,
New York
,
Nov. 28–Dec. 1
.
139.
Szebeko
,
D.
, and
Tan
,
L.
,
2010
, “
Co-designing for Society
,”
Aust. Med. J.
,
3
(
9
), pp.
580
590
. 10.4066/AMJ.2010.378
140.
Björgvinsson
,
E.
,
Ehn
,
P.
, and
Hillgren
,
P. A.
,
2010
, “
Participatory Design and Democratizing Innovation
,”
Proceedings of the 11th Biennial Participatory Design Conference
,
New York
,
Nov. 29–Dec. 3
,
ACM
,
New York
, pp.
41
50
.
141.
Mouffe
,
C.
,
2000
,
The Democratic Paradox
,
Verso
,
London
.
142.
He
,
B.
,
Tang
,
W.
, and
Wang
,
J.
,
2015
, “
Product Model Integrated With Carbon Footprint for Low-Carbon Design
,”
Int. J. Precis. Eng. Manuf.
,
16
(
11
), pp.
2383
2388
. 10.1007/s12541-015-0307-7
143.
He
,
B.
,
Song
,
W.
, and
Wang
,
Y.
,
2013
, “
A Feature-Based Approach Towards an Integrated Product Model in Intelligent Design
,”
Int. J. Adv. Manuf. Technol.
,
69
(
1–4
), pp.
15
30
. 10.1007/s00170-013-4991-0
144.
Baumann
,
H.
,
Boons
,
F.
, and
Bragd
,
A.
,
2002
, “
Mapping the Green Product Development Field: Engineering, Policy and Business Perspectives
,”
J. Cleaner Prod.
,
10
(
5
), pp.
409
425
. 10.1016/S0959-6526(02)00015-X
145.
Devanathan
,
S.
,
Ramanujan
,
D.
,
Bernstein
,
W. Z.
,
Zhao
,
F.
, and
Ramani
,
K.
,
2010
, “
Integration of Sustainability Into Early Design Through the Function Impact Matrix
,”
ASME J. Mech. Des.
,
132
(
8
), p.
081004
. 10.1115/1.4001890
146.
International Organization for Standardization
,
2006
, “
Environmental Management: Life Cycle Assessment; Principles and Framework (No. 2006)
,”
ISO 14040
.
147.
Bey
,
N.
,
2000
,
The Oil Point Method—a Tool for Indicative Environmental Evaluation in Material and Process Selection
,
PhD dissertation
,
Section for Production Technology Department of Manufacturing Engineering Technical University of Denmark
.
148.
Dennison
,
R. F.
,
2000
, “
Quality Assessment of Collection Development Through Tiered Checklists: Can You Prove You Are a Good Collection Developer?
,”
Collect. Build.
,
19
(
1
), pp.
24
27
. 10.1108/01604950010310866
149.
Shen
,
L. Y.
,
Li Hao
,
J.
,
Tam
,
V. W. Y.
, and
Yao
,
H.
,
2007
, “
A Checklist for Assessing Sustainability Performance of Construction Projects
,”
J. Civ. Eng. Manage.
,
13
(
4
), pp.
273
281
. 10.3846/13923730.2007.9636447
150.
Blanco
,
J.
,
2016
, “
Beyond the Checklist: An Approach to Understand Practitioner Experience During Sustainable Design Process
,”
Architect. Eng. Des. Manage.
,
12
(
4
), p.
13
. 10.1080/17452007.2016.1178628
151.
Luttropp
,
C.
, and
Lagerstedt
,
J.
,
2006
, “
Ecodesign and the Ten Golden Rules: Generic Advice for Merging Environmental Aspects Into Product Development
,”
J. Cleaner Prod.
,
14
(
15–16
), pp.
1396
1408
. 10.1016/j.jclepro.2005.11.022
152.
Bednárová
,
L.
,
Witek
,
L.
,
Piętowska-Laska
,
R.
, and
Laska
,
A.
,
2015
, “
Assessment Methods of the Influence on Environment in the Context of Ecodesign Process
,”
Chapter
,
3
, pp.
15
20
.
153.
Zare Mehrjerdi
,
Y.
,
2010
, “
Quality Function Deployment and Its Extensions
,”
Int. J. Qual. Reliab. Manage.
,
27
(
6
), pp.
616
640
. 10.1108/02656711011054524
154.
Graedel
,
T. E.
, and
Saxton
,
E.
,
2002
, “
Improving the Overall Environmental Performance of Existing Telecommunications Facilities
,”
Int. J. Life Cycle Assess.
,
7
(
4
), pp.
219
224
. 10.1007/BF02978876
155.
Close
,
J.
,
Gerstakis
,
H.
, and
Lewis
,
C.
,
1996
,
A Guide to EcoRedesing, Improving the Environmental Performance of Manufacture Products
,
Centre for Design at RMIT
,
Australia
.
156.
Zhang
,
C.
,
Huang
,
H.
,
Zhang
,
L.
, and
Liu
,
Z.
,
2019
, “
Semi-quantitative Method for Task Planning in Product Eco-Design
,”
Int. J. Pro. Res.
,
57
(
8
), pp.
2263
2280
. 10.1080/00207543.2018.1514474
157.
Wimmer
,
W.
,
Züst
,
R.
, and
Ch
,
S.
,
2002
, “
The Application of the ECODESIGN PILOT and Methodical Support for the Implementation of ECODESIGN in Products
,”
DS 30: Proceedings of DESIGN 2002, the 7th International Design Conference
,
Dubrovnik
,
Aug. 19–21
.
158.
Wimmer
,
W.
, and
Züst
,
R.
,
2003
,
ECODESIGN Pilot: Product Investigation, Learning and Optimization Tool for Sustainable Product Development with CD-ROM
, Vol.
3
,
Springer Science & Business Media
,
New York
.
159.
Verghese
,
K. L.
,
Horne
,
R.
, and
Carre
,
A.
,
2010
, “
PIQET: The Design and Development of an Online ‘Streamlined’ LCA Tool for Sustainable Packaging Design Decision Support
,”
Int. J. Life Cycle Assess.
,
15
(
6
), pp.
608
620
. 10.1007/s11367-010-0193-2
160.
Arena
,
M.
,
Azzone
,
G.
, and
Conte
,
A.
,
2013
, “
A Streamlined LCA Framework to Support Early Decision Making in Vehicle Development
,”
J. Cleaner Prod.
,
41
, pp.
105
113
. 10.1016/j.jclepro.2012.09.031
161.
Ahmad
,
S.
,
Wong
,
K. Y.
,
Tseng
,
M. L.
, and
Wong
,
W. P.
,
2018
, “
Sustainable Product Design and Development: A Review of Tools, Applications and Research Prospects
,”
Resour. Conserv. Recy.
,
132
, pp.
49
61
. 10.1016/j.resconrec.2018.01.020
162.
Ashby
,
M. F.
,
2000
, “
Multi-objective Optimization in Material Design and Selection
,”
Acta Mater
,
48
(
1
), pp.
359
369
. 10.1016/S1359-6454(99)00304-3
163.
Bereketli
,
I.
, and
Genevois
,
M. E.
,
2013
, “
An Integrated QFDE Approach for Identifying Improvement Strategies in Sustainable Product Development
,”
J. Cleaner Prod.
,
54
, pp.
188
198
. 10.1016/j.jclepro.2013.03.053
164.
Hosseinpour
,
A.
,
Peng
,
Q.
, and
Gu
,
P.
,
2015
, “
A Benchmark-Based Method for Sustainable Product Design
,”
Benchmarking: Int. J.
,
22
(
4
), pp.
643
664
. 10.1108/BIJ-09-2014-0092
165.
Kuo
,
T. C.
,
Wu
,
H. H.
, and
Shieh
,
J. I.
,
2009
, “
Integration of Environmental Considerations in Quality Function Deployment by Using Fuzzy Logic
,”
Expert Syst. Appl.
,
36
(
3
), pp.
7148
7156
. 10.1016/j.eswa.2008.08.029
166.
Vinodh
,
S.
, and
Rathod
,
G.
,
2010
, “
Integration of ECQFD and LCA for Sustainable Product Design
,”
J. Cleaner Prod.
,
18
(
8
), pp.
833
842
. 10.1016/j.jclepro.2009.12.024
167.
Yu
,
S.
,
Yang
,
Q.
,
Tao
,
J.
, and
Xu
,
X.
,
2015
, “
Incorporating Quality Function Deployment With Modularity for the End-of-Life of a Product Family
,”
J. Cleaner Prod.
,
87
, pp.
423
430
. 10.1016/j.jclepro.2014.10.037
168.
Song
,
W.
, and
Sakao
,
T.
,
2017
, “
A Customization-Oriented Framework for Design of Sustainable Product/Service System
,”
J. Cleaner Prod.
,
140
, pp.
1672
1685
. 10.1016/j.jclepro.2016.09.111
169.
Eddy
,
D. C.
,
Krishnamurty
,
S.
,
Grosse
,
I. R.
,
Wileden
,
J. C.
, and
Lewis
,
K. E.
,
2013
, “
A Normative Decision Analysis Method for the Sustainability-Based Design of Products
,”
J. Eng. Des.
,
24
(
5
), pp.
342
362
. 10.1080/09544828.2012.745931
170.
Hung
,
M. L.
, and
Ma
,
H. W.
,
2009
, “
Quantifying System Uncertainty of Life Cycle Assessment Based on Monte Carlo Simulation
,”
Int. J. Life Cycle Assess.
,
14
(
1
), pp.
19
27
. 10.1007/s11367-008-0034-8
171.
Vinodh
,
S.
,
Kamala
,
V.
, and
Jayakrishna
,
K.
,
2014
, “
Integration of ECQFD, TRIZ, and AHP for Innovative and Sustainable Product Development
,”
Appl. Math. Model.
,
38
(
11–12
), pp.
2758
2770
. 10.1016/j.apm.2013.10.057
172.
Byggeth
,
S.
,
Broman
,
G.
, and
Robèrt
,
K. H.
,
2007
, “
A Method for Sustainable Product Development Based on a Modular System of Guiding Questions
,”
J. Cleaner Prod.
,
15
(
1
), pp.
1
11
. 10.1016/j.jclepro.2006.02.007
173.
Petrick
,
I. J.
, and
Echols
,
A. E.
,
2004
, “
Technology Roadmapping in Review: A Tool for Making Sustainable new Product Development Decisions
,”
Technol. Forecast. Soc. Change
,
71
(
1–2
), pp.
81
100
. 10.1016/S0040-1625(03)00064-7
174.
Azkarate
,
A.
,
Ricondo
,
I.
,
Pérez
,
A.
, and
Martínez
,
P.
,
2011
, “
An Assessment Method and Design Support System for Designing Sustainable Machine Tools
,”
J. Eng. Des.
,
22
(
3
), pp.
165
179
. 10.1080/09544820903153570
175.
Shuaib
,
M.
,
Seevers
,
D.
,
Zhang
,
X.
,
Badurdeen
,
F.
,
Rouch
,
K. E.
, and
Jawahir
,
I. S.
,
2014
, “
Product Sustainability Index (ProdSI) A Metrics-Based Framework to Evaluate the Total Life Cycle Sustainability of Manufactured Products
,”
J. Ind. Ecol.
,
18
(
4
), pp.
491
507
. 10.1111/jiec.12179
176.
Singh
,
S.
,
Olugu
,
E. U.
,
Musa
,
S. N.
, and
Mahat
,
A. B.
,
2018
, “
Fuzzy-Based Sustainability Evaluation Method for Manufacturing SMEs Using Balanced Scorecard Framework
,”
J. Intell. Manuf.
,
29
(
1
), pp.
1
18
. 10.1007/s10845-015-1081-1
177.
Buchert
,
T.
,
Halstenberg
,
F. A.
,
Bonvoisin
,
J.
,
Lindow
,
K.
, and
Stark
,
R.
,
2017
, “
Target-Driven Selection and Scheduling of Methods for Sustainable Product Development
,”
J. Cleaner Prod.
,
161
, pp.
403
421
. 10.1016/j.jclepro.2017.05.067
178.
Hossaini
,
N.
,
Reza
,
B.
,
Akhtar
,
S.
,
Sadiq
,
R.
, and
Hewage
,
K.
,
2015
, “
AHP Based Life Cycle Sustainability Assessment (LCSA) Framework: A Case Study of Six Storey Wood Frame and Concrete Frame Buildings in Vancouver
,”
J. Environ. Plann. Manage.
,
58
(
7
), pp.
1217
1241
. 10.1080/09640568.2014.920704
179.
Hoogmartens
,
R.
,
Van Passel
,
S.
,
Van Acker
,
K.
, and
Dubois
,
M.
,
2014
, “
Bridging the Gap Between LCA, LCC and CBA as Sustainability Assessment Tools
,”
Environ. Impact Assess. Rev.
,
48
, pp.
27
33
. 10.1016/j.eiar.2014.05.001
180.
Kim
,
S.
, and
Moon
,
S. K.
,
2017
, “
Sustainable Platform Identification for Product Family Design
,”
J. Cleaner Prod.
,
143
, pp.
567
581
. 10.1016/j.jclepro.2016.12.073
181.
Manzini
,
E.
, and
Vezzoli
,
C.
,
2003
, “
A Strategic Design Approach to Develop Sustainable Product Service Systems: Examples Taken From the ‘Environmentally Friendly Innovation’ Italian Prize
,”
J. Cleaner Prod.
,
11
(
8
), pp.
851
857
. 10.1016/S0959-6526(02)00153-1
182.
Fargnoli
,
M.
,
De Minicis
,
M.
, and
Tronci
,
M.
,
2014
, “
Design Management for Sustainability: An Integrated Approach for the Development of Sustainable Products
,”
J. Eng. Technol. Manage.
,
34
, pp.
29
45
. 10.1016/j.jengtecman.2013.09.005
183.
Tao
,
J.
, and
Yu
,
S.
,
2018
, “
Product Life Cycle Design for Sustainable Value Creation: Methods of Sustainable Product Development in the Context of High Value Engineering
,”
Proc. CIRP
,
69
, pp.
25
30
. 10.1016/j.procir.2017.11.099
184.
Gaziulusoy
,
A. İ.
,
Boyle
,
C.
, and
McDowall
,
R.
,
2013
, “
System Innovation for Sustainability: a Systemic Double-Flow Scenario Method for Companies
,”
J. Cleaner Prod.
,
45
, pp.
104
116
. 10.1016/j.jclepro.2012.05.013
185.
He
,
B.
,
Zhang
,
P.
,
Zhu
,
N.
,
Cao
,
J.
,
Huang
,
S.
, and
Tang
,
W.
,
2016
, “
Skeleton Model-Based Approach to Integrated Engineering Design and Analysis
,”
Int. J. Adv. Manu. Technol.
,
85
(
5–8
), pp.
1105
1115
. 10.1007/s00170-015-8047-5
186.
He
,
B.
,
Zhang
,
P.
, and
Wang
,
J.
,
2014
, “
Automated Synthesis of Mechanisms With Consideration of Mechanical Efficiency
,”
J. Eng. Des.
,
25
(
4–6
), pp.
213
237
. 10.1080/09544828.2014.946894
187.
Feng
,
Y.
,
Hu
,
B.
,
Hao
,
H.
,
Gao
,
Y.
,
Li
,
Z.
, and
Tan
,
J.
,
2018
, “
Design of Distributed Cyber-Physical Systems for Connected and Automated Vehicles With Implementing Methodologies
,”
IEEE Trans. Ind. Inform.
,
14
(
9
), pp.
4200
4211
. 10.1109/TII.2018.2805910
188.
He
,
B.
, and
Bai
K. J.
,
2019
, “
Digital Twins-Based Sustainable Intelligent Manufacturing: A Review
,”
Adv. Manuf.
(in press).
189.
Gao
,
Z.
,
Zeng
,
L.
,
He
,
B.
,
Luo
,
T.
, and
Zhang
,
P.
,
2018
, “
Type Synthesis of Non-Holonomic Spherical Constraint Underactuated Parallel Robotics
,”
Acta Astronaut.
,
152
, pp.
509
520
. 10.1016/j.actaastro.2018.08.050
190.
He
,
B.
,
Liu
,
Y.
,
Zeng
,
L.
,
Wang
,
S.
,
Zhang
,
D.
, and
Yu
,
Q.
,
2019
, “
Product Carbon Footprint Across Sustainable Supply Chain
,”
J. Cleaner Prod.
,
241
, p.
118320
. 10.1016/j.jclepro.2019.118320
191.
Tsarevsky
,
N. V.
, and
Matyjaszewski
,
K.
,
2007
, “
‘Green’ Atom Transfer Radical Polymerization: From Process Design to Preparation of Well-Defined Environmentally Friendly Polymeric Materials
,”
Chem. Rev.
,
107
(
6
), pp.
2270
2299
. 10.1021/cr050947p
192.
Elimelech
,
M.
, and
Phillip
,
W. A.
,
2011
, “
The Future of Seawater Desalination: Energy, Technology, and the Environment
,”
Science
,
333
(
6043
), pp.
712
717
. 10.1126/science.1200488
193.
Fixson
,
S. K.
,
2005
, “
Product Architecture Assessment: A Tool to Link Product, Process, and Supply Chain Design Decisions
,”
J. Oper. Manage.
,
23
(
3–4
), pp.
345
369
. 10.1016/j.jom.2004.08.006
194.
Pulkkinen
,
A.
,
Martikainen
,
A.
, and
Kuusela
,
J.
,
2012
, “
A Framework of Design for Procurement
,”
2012 18th International ICE Conference on Engineering, Technology and Innovation (ICE)
,
Munich, Germany
,
June 18–20
,
IEEE
, pp.
1
10
.
195.
Soylu
,
K.
, and
Dumville
,
J. C.
,
2011
, “
Design for Environment: The Greening of Product and Supply Chain
,”
Marit. Econ. Logist.
,
13
(
1
), pp.
29
43
. 10.1057/mel.2010.19
196.
McKenzie-Mohr
,
D.
,
2011
,
Fostering Sustainable Behavior: An Introduction to Community-Based Social Marketing
,
New Society Publishers
,
Gabriola, Canada
.
197.
Braungart
,
M.
,
McDonough
,
W.
, and
Bollinger
,
A.
,
2007
, “
Cradle-to-Cradle Design: Creating Healthy Emissions—A Strategy for Eco-Effective Product and System Design
,”
J. Cleaner Prod.
,
15
(
13–14
), pp.
1337
1348
. 10.1016/j.jclepro.2006.08.003
198.
Holt
,
R. J.
,
Holt
,
R. J.
, and
Barnes
,
C. J.
,
2012
, “
Proactive Design for Manufacture Through Decision Analysis
,”
Int. J. Pro. Dev.
,
13
(
1
), pp.
67
83
. 10.1504/IJPD.2011.037595
199.
Mottonen
,
M.
,
Harkonen
,
J.
,
Belt
,
P.
,
Haapasalo
,
H.
, and
Simila
,
J.
,
2009
, “
Managerial View on Design for Manufacturing
,”
Ind. Manage. Data Syst.
,
109
(
6
), pp.
859
872
. 10.1108/02635570910968081
200.
Boothroyd
,
G.
, and
Dewhurst
,
P.
,
1983
,
Design for Assembly: A Designer's Handbook
,
University of Massachusetts
,
MA
.
201.
Swift
,
M. M.
,
Bershad
,
B. N.
, and
Levy
,
H. M.
,
2003
, “
Improving the Reliability of Commodity Operating Systems
,”
ACM SIGOPS Ope. Syst. Rev.
,
37
(
5
), pp.
207
222
. 10.1145/1165389.945466
202.
Graedel
,
T. E.
,
Allenby
,
B. R.
, and
Comrie
,
P.
,
1995
, “
Matrix Approaches to Abridged Life Cycle Assessment
,”
Environ. Sci. Technol.
,
29
(
3
), pp.
134
139
. 10.1021/es00003a751
203.
Dowlatshahi
,
S.
,
1996
, “
The Role of Logistics in Concurrent Engineering
,”
Int. J. Prod. Econ.
,
44
(
3
), pp.
189
199
. 10.1016/0925-5273(96)00173-9
204.
Tibben-Lembke
,
R. S.
,
2002
, “
Life After Death: Reverse Logistics and the Product Life Cycle
,”
Int. J. Phys. Distrib. Logist. Manage.
,
32
(
3
), pp.
223
244
. 10.1108/09600030210426548
205.
Herrmann
,
M.
,
2014
, “
Packaging—Materials Review
,”
AIP Conf. Proc.
,
1597
(
1
), pp.
121
133
. 10.1063/1.4878483
206.
Hart
,
S. L.
,
1997
, “
Beyond Greening: Strategies for a Sustainable World
,”
Harvard Bus. Rev.
,
75
(
1
), pp.
66
76
.
207.
Mayyas
,
A.
,
Qattawi
,
A.
,
Omar
,
M.
, and
Shan
,
D.
,
2012
, “
Design for Sustainability in Automotive Industry: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
1845
1862
. 10.1016/j.rser.2012.01.012
208.
Telenko
,
C.
,
Seepersad
,
C. C.
, and
Webber
,
M. E.
,
2008
, “
A Compilation of Design for Environment Principles and Guidelines
,”
ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
New York
,
Aug. 3–6
, pp.
289
301
.
209.
Palani Rajan
,
P. K.
,
Van Wie
,
M.
,
Campbell
,
M.
,
Otto
,
K.
, and
Wood
,
K.
,
2003
, “
Design for Flexibility-Measures and Guidelines
,”
Paper Read at International Conference on Engineering Design
,
Stockholm, Sweden
,
Aug. 19–21
.
210.
Swink
,
M. L.
, and
Calantone
,
R.
,
2004
, “
Design-Manufacturing Integration as a Mediator of Antecedents to New Product Design Quality
,”
IEEE Trans. Eng. Manage.
,
51
(
4
), pp.
472
482
. 10.1109/TEM.2004.835088
211.
Koch
,
P. N.
,
Yang
,
R. J.
, and
Gu
,
L.
,
2004
, “
Design for Six Sigma Through Robust Optimization
,”
Struct. Multidiscip. O.
,
26
(
3–4
), pp.
235
248
. 10.1007/s00158-003-0337-0
212.
Das
,
S.
,
Datla
,
V.
, and
Gami
,
S.
,
2000
, “
DFQM—An Approach for Improving the Quality of Assembled Products
,”
Int. J. Prod. Res.
,
38
(
2
), pp.
457
477
. 10.1080/002075400189527
213.
Ireson
,
W. G.
,
Coombs
,
C. F.
, and
Moss
,
R. Y.
,
1996
,
Handbook of Reliability Engineering and Management
,
McGraw-Hill
,
New York
.
214.
Feng
,
Y.
,
Hong
,
Z.
,
Tian
,
G.
,
Li
,
Z.
,
Tan
,
J.
, and
Hu
,
H.
,
2018
, “
Environmentally Friendly MCDM of Reliability-Based Product Optimisation Combining DEMATEL-Based ANP, Interval Uncertainty and Vlse Kriterijumska Optimizacija Kompromisno Resenje (VIKOR)
,”
Inform. Sci.
,
442
, pp.
128
144
. 10.1016/j.ins.2018.02.038
215.
Goffin
,
K.
, and
New
,
C.
,
2001
, “
Customer Support and New Product Development—An Exploratory Study
,”
Int. J. Oper. Prod. Manage.
,
21
(
3
), pp.
275
301
. 10.1108/01443570110364605
216.
Moss
,
M. A.
,
1985
,
Designing for Minimal Maintenance Expense: The Practical Application of Reliability and Maintainability
,
CRC Press
,
Boca Raton, FL
.
217.
Kuo
,
T. C.
,
Huang
,
S. H.
, and
Zhang
,
H. C.
,
2001
, “
Design for Manufacture and Design for ‘X’: Concepts, Applications, and Perspectives
,”
Comput. Ind. Eng.
,
41
(
3
), pp.
241
260
. 10.1016/S0360-8352(01)00045-6
218.
Cappelli
,
F.
,
Delogu
,
M.
,
Pierini
,
M.
, and
Schiavone
,
F.
,
2007
, “
Design for Disassembly: A Methodology for Identifying the Optimal Disassembly Sequence
,”
J. Eng. Des.
,
18
(
6
), pp.
563
575
. 10.1080/09544820601013019
219.
Schmalz
,
J.
, and
Boks
,
C.
,
2011
,
Simultaneous Application of Design for Sustainable Behavior and Linked Benefit Strategies in Practice
,
Springer
,
Berlin
.
220.
Feng
,
Y.
,
Gao
,
Y.
,
Tian
,
G.
,
Li
,
Z.
,
Hu
,
H.
, and
Zheng
,
H.
,
2019
, “
Flexible Process Planning and End-of-Life Decision-Making for Product Recovery Optimization Based on Hybrid Disassembly
,”
IEEE Trans. Automation Sci. Eng.
,
16
(
1
), pp.
311
326
. 10.1109/TASE.2018.2840348
221.
Feng
,
Y.
,
Zhou
,
M.
,
Tian
,
G.
,
Li
,
Z.
,
Zhang
,
Z.
,
Zhang
,
Q.
, and
Tan
,
J.
,
2018
, “
Target Disassembly Sequencing and Scheme Evaluation for CNC Machine Tools Using Improved Multiobjective ant Colony Algorithm and Fuzzy Integral
,”
IEEE Trans. Syst. Man Cyberne. Syst.
, pp.
1
14
. 10.1109/TSMC.2018.2847448
222.
Ijomah
,
W. L.
,
McMahon
,
C. A.
,
Hammond
,
G. P.
, and
Newman
,
S. T.
,
2007
, “
Development of Design for Remanufacturing Guidelines to Support Sustainable Manufacturing
,”
Robot. Cim. Int. Manuf.
,
23
(
6
), pp.
712
719
. 10.1016/j.rcim.2007.02.017
223.
Hatcher
,
G. D.
,
Ijomah
,
W. L.
, and
Windmill
,
J. F. C.
,
2011
, “
Design for Remanufacture: A Literature Review and Future Research Needs
,”
J. Cleaner Prod.
,
19
(
17
), pp.
2004
2014
. 10.1016/j.jclepro.2011.06.019
224.
Keoleian
,
G. A.
, and
Menerey
,
D.
,
1994
, “
Sustainable Development by Design: Review of Life Cycle Design and Related Approaches
,”
J. Air Waste Manage.
,
44
(
5
), pp.
645
668
. 10.1080/1073161X.1994.10467269
225.
Fiksel
,
J.
,
1996
,
Design for Environment: Creating Eco-Efficient Products and Processes
,
McGraw-Hill
,
New York
.
226.
Francis
,
F.
,
2009
, “
Environmentally Conscious Quality Function Deployment—A new Approach for Green Manufacturing
,”
IEEE International Conference on Advances in Computational Tools for Engineering Applications
,
Zouk Mosbeh, Lebanon
,
July 15–17
, pp.
340
343
.
227.
Ishii
,
K.
,
Eubanks
,
C. F.
, and
Marco
,
P. D.
,
1994
, “
Design for Product Retirement and Material Life-Cycle
,”
Mater. Des.
,
15
(
4
), pp.
225
233
. 10.1016/0261-3069(94)90007-8
228.
Sekutowski
,
J. C.
,
1991
, “
Design for Environment
,”
Ecomaterials
,
16
(
6
), p.
3
.
229.
Ljungberg
,
L. Y.
,
2007
, “
Materials Selection and Design for Development of Sustainable Products
,”
Mater. Des.
,
28
(
2
), pp.
466
479
. 10.1016/j.matdes.2005.09.006
230.
Tromp
,
N.
,
Hekkert
,
P.
, and
Verbeek
,
P. P.
,
2011
, “
Design for Socially Responsible Behavior: A Classification of Influence Based on Intended User Experience
,”
Des. Issues
,
27
(
3
), pp.
3
19
. 10.1162/DESI_a_00087
You do not currently have access to this content.