Abstract

Manufacturers use cloud manufacturing platforms to offer their services. The literature has suggested a semantic web-based cloud manufacturing framework, in which engineering knowledge is modeled using structured syntax. Translating engineering rules to semantic rules by human is a painstaking task and prone to mistakes. We present a scheme that treats converting engineering knowledge into semantic rules as a machine translation task and uses neural machine translation techniques to carry out the conversion.

References

References
1.
Xu
,
X.
,
2012
, “
From Cloud Computing to Cloud Manufacturing
,”
Rob. Comput. Integr. Manuf.
,
28
(
1
), pp.
75
86
. 10.1016/j.rcim.2011.07.002
2.
Wu
,
D.
,
Rosen
,
D. W.
,
Wang
,
L.
, and
Schaefer
,
D.
,
2015
, “
Cloud-Based Design and Manufacturing: A New Paradigm in Digital Manufacturing and Design Innovation
,”
Comput. Aided Des.
,
59
, pp.
1
14
. 10.1016/j.cad.2014.07.006
3.
Lu
,
Y.
,
Xu
,
X.
, and
Xu
,
J.
,
2014
, “
Development of a Hybrid Manufacturing Cloud
,”
J. Manuf. Syst.
,
33
(
4
), pp.
551
566
. 10.1016/j.jmsy.2014.05.003
4.
Lu
,
Y.
, and
Xu
,
X.
,
2018
, “
Resource Virtualization: A Core Technology for Developing Cyber-Physical Production Systems
,”
J. Manuf. Syst.
,
47
, pp.
128
140
. 10.1016/j.jmsy.2018.05.003
5.
Lu
,
Y.
, and
Xu
,
X.
,
2017
, “
A Semantic Web-Based Framework for Service Composition in a Cloud Manufacturing Environment
,”
J. Manuf. Syst.
,
42
, pp.
69
81
. 10.1016/j.jmsy.2016.11.004
6.
Ye
,
X.
, and
Zhao
,
P.
,
2016
, “
Converting Service Rules to Semantic Rules
,”
Proceedings—2016 IEEE International Conference on Services Computing
,
San Francisco, CA
,
July 1–3
,
IEEE
, pp.
752
759
.
7.
Cho
,
K.
,
van Merrienboer
,
B.
,
Gulcehre
,
C.
,
Bahdanau
,
D.
,
Bougares
,
F.
,
Schwenk
,
H.
, and
Bengio
,
Y.
,
2014
, “
Learning Phrase Representations Using RNN Encoder–Decoder for Statistical Machine Translation
,”
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
,
Stroudsburg, PA
,
Oct. 20–22
, pp.
1724
1734
.
8.
Kang
,
S.
,
Patil
,
L.
,
Rangarajan
,
A.
,
Moitra
,
A.
,
Jia
,
T.
,
Robinson
,
D.
, and
Dutta
,
D.
,
2015
, “
Extraction of Manufacturing Rules From Unstructured Text Using a Semantic Framework
,”
ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Boston, MA
,
Aug. 10–14
,
ASME
, p.
V01BT02A033
.
9.
Rangarajan
,
A.
,
Radhakrishnan
,
P.
,
Moitra
,
A.
,
Crapo
,
A.
, and
Robinson
,
D.
,
2013
, “
Manufacturability Analysis and Design Feedback System Developed Using Semantic Framework
,”
ASME 2013 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Portland, OR
,
Aug. 11–15
,
ASME
, p.
V004T05A001
.
10.
Saada
,
H.
,
Dolques
,
X.
,
Huchard
,
M.
,
Nebut
,
C.
, and
Sahraoui
,
H.
,
2012
, “
Generation of Operational Transformation Rules From Examples of Model Transformations
,”
Internal Conference on Model Driven Engineering Languages and Systems
,
Innsbruck, Austria
,
Oct. 8–11
.
11.
Berant
,
J.
,
Chou
,
A.
,
Frostig
,
R.
, and
Liang
,
P.
,
2013
, “
Semantic Parsing on Freebase From Question–Answer Pairs
,”
Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing
,
Seattle
,
Oct. 17–19
.
12.
Wong
,
Y. W.
, and
Mooney
,
R. J.
,
2006
, “
Learning for Semantic Parsing With Statistical Machine Translation
,”
Proceedings of the Main Conference on Human Language Technology Conference of the North American Chapter of the Association of Computational Linguistics
,
New York
,
June 4–9
.
13.
Brown
,
P. F.
,
Della Pietra
,
V. J.
,
Della Pietra
,
S. A.
, and
Mercer
,
R. L.
,
1993
, “
The Mathematics of Statistical Machine Translation: Parameter Estimation
,”
Comput. Ling.
,
19
(
2
), pp.
263
312
.
14.
Bentivogli
,
L.
,
Bisazza
,
A.
,
Cettolo
,
M.
, and
Federico
,
M.
,
2016
, “
Neural Versus Phrase-Based Machine Translation Quality: A Case Study
,”
Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing
,
Austin, TX
,
Nov. 2–4
, pp.
257
267
.
15.
Luong
,
T.
,
Pham
,
H.
, and
Manning
,
C. D.
,
2015
, “
Effective Approaches to Attention-Based Neural Machine Translation
,”
Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing
,
Lisbon
,
Sept. 14–16
, pp.
1412
1421
.
16.
Bahdanau
,
D.
,
Cho
,
K.
, and
Bengio
,
Y.
,
2015
, “
Neural Machine Translation by Jointly Learning to Align and Translate
,”
Proceedings of the 2015 International Conference on Learning Representations
,
San Diego, CA
,
May 7–9
.
17.
Pennington
,
J.
,
Socher
,
R.
, and
Manning
,
C.
,
2014
, “
Glove: Global Vectors for Word Representation
,”
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
,
Stroudsburg, PA
,
Nov. 16–18
, pp.
1532
1543
.
18.
Arora
,
S.
,
Liang
,
Y.
, and
Ma
,
T.
,
2017
, “
A Simple But Tough-to-Beat Baseline for Sentence Embeddings
,”
Proceedings of the 2017 International Conference on Learning Representations
,
Toulon, France
,
Apr. 24–26
.
19.
Tai
,
K. S.
,
Socher
,
R.
, and
Manning
,
C. D.
,
2015
, “
Improved Semantic Representations From Tree-Structured Long Short-Term Memory Networks
,”
Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics
,
Beijing
,
July 1–3
, pp.
1556
1566
.
You do not currently have access to this content.