Abstract

Unpredictable disturbances and chattering are the major challenges of the robot manipulator control. In recent years, trajectory-tracking-based controllers have been recognized by many researchers as the most promising method to understand robot dynamics with uncertainties and improve robot control. However, reliable trajectory-tracking-based controllers require high model precision and complexity. To develop an agile and straightforward method to mitigate the impact caused by uncertain disturbance and chattering, this study proposed an adaptive neural network sliding mode controller based on the super-twisting algorithm. The proposed model not only can minimize the tracking error but also improve the system robustness with a simpler structure. Moreover, the proposed controller has the following two distinctive features: (1) the weights of the radial basis function (RBF network) are designed to be adjusted in real-time and (2) the prior knowledge of the actual robot system is not required. The analytical model of the proposed controller was proved to be stable and ensured by the Lyapunov theory. To validate the proposed model, this study also conducted a comparative simulation on a two-link robot manipulator system with the conventional sliding mode controller and the model-based controller. The results suggest the proposed model improved the control accuracy and had fewer chattering.

References

References
1.
De Luca
,
A.
,
Siciliano
,
B.
, and
Zollo
,
L.
,
2005
, “
PD Control With On-Line Gravity Compensation for Robots With Elastic Joints: Theory and Experiments
,”
Automatica
,
41
(
10
), pp.
1809
1819
. 10.1016/j.automatica.2005.05.009
2.
Mahmoodabadi
,
M. J.
,
Abedzadeh Maafi
,
R.
, and
Taherkhorsandi
,
M.
,
2017
, “
An Optimal Adaptive Robust PID Controller Subject to Fuzzy Rules and Sliding Modes for MIMO Uncertain Chaotic Systems
,”
Appl. Soft Comput.
,
52
, pp.
1191
1199
. 10.1016/j.asoc.2016.09.007
3.
Mohammadi Asl
,
R.
,
Shabbouei Hagh
,
Y.
, and
Palm
,
R.
,
2017
, “
Robust Control by Adaptive Non-Singular Terminal Sliding Mode
,”
Eng. Appl. Artif. Intell.
,
59
, pp.
205
217
. 10.1016/j.engappai.2017.01.005
4.
Ahmadi
,
S. M.
, and
Fateh
,
M. M.
,
2016
, “
Robust Control of Electrically Driven Robots Using Adaptive Uncertainty Estimation
,”
Comput. Electr. Eng.
,
56
, pp.
674
687
. 10.1016/j.compeleceng.2016.08.005
5.
Corradini
,
M. L.
,
Fossi
,
V.
,
Giantomassi
,
A.
,
Ippoliti
,
G.
,
Longhi
,
S.
, and
Orlando
,
G.
,
2012
, “
Discrete Time Sliding Mode Control of Robotic Manipulators: Development and Experimental Validation
,”
Control Eng. Pract.
,
20
(
8
), pp.
816
822
. 10.1016/j.conengprac.2012.04.005
6.
Amin
,
A. T. M.
,
Rahim
,
A. H. A.
, and
Low
,
C. Y.
,
2014
, “
Adaptive Controller Algorithm for 2-DOF Humanoid Robot Arm
,”
Procedia Technol.
,
15
, pp.
765
774
. 10.1016/j.protcy.2014.09.049
7.
Mohammadi
,
A.
,
Tavakoli
,
M.
,
Marquez
,
H. J.
, and
Hashemzadeh
,
F.
,
2013
, “
Nonlinear Disturbance Observer Design for Robotic Manipulators
,”
Control Eng. Pract.
,
21
(
3
), pp.
253
267
. 10.1016/j.conengprac.2012.10.008
8.
Duka
,
A.-V.
,
2014
, “
Neural Network Based Inverse Kinematics Solution for Trajectory Tracking of a Robotic Arm
,”
Procedia Technol.
,
12
, pp.
20
27
. 10.1016/j.protcy.2013.12.451
9.
Tran
,
M.-D.
, and
Kang
,
H.-J.
,
2016
, “
A Novel Adaptive Finite-Time Tracking Control for Robotic Manipulators Using Nonsingular Terminal Sliding Mode and RBF Neural Networks
,”
Int. J. Precis. Eng. Manuf.
,
17
(
7
), pp.
863
870
. 10.1007/s12541-016-0105-x
10.
He
,
W.
,
Ge
,
S. S.
,
Li
,
Y.
,
Chew
,
E.
, and
Ng
,
Y. S.
,
2015
, “
Neural Network Control of a Rehabilitation Robot by State and Output Feedback
,”
J. Intell. Robot. Syst.
,
80
(
1
), pp.
15
31
. 10.1007/s10846-014-0150-6
11.
Sun
,
T.
,
Pei
,
H.
,
Pan
,
Y.
,
Zhou
,
H.
, and
Zhang
,
C.
,
2011
, “
Neural Network-Based Sliding Mode Adaptive Control for Robot Manipulators
,”
Neurocomputing
,
74
(
14–15
), pp.
2377
2384
. 10.1016/j.neucom.2011.03.015
12.
Xu
,
D.
,
Zhao
,
D.
,
Yi
,
J.
, and
Tan
,
X.
,
2009
, “
Trajectory Tracking Control of Omnidirectional Wheeled Mobile Manipulators: Robust Neural Network-Based Sliding Mode Approach
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
39
(
3
), pp.
788
799
. 10.1109/TSMCB.2008.2009464
13.
Van Cuong
,
P.
, and
Nan
,
W. Y.
,
2016
, “
Adaptive Trajectory Tracking Neural Network Control With Robust Compensator for Robot Manipulators
,”
Neural Comput. Appl.
,
27
(
2
), pp.
525
536
. 10.1007/s00521-015-1873-4
14.
Pan
,
Y.
,
Liu
,
Y.
,
Xu
,
B.
, and
Yu
,
H.
,
2016
, “
Hybrid Feedback Feedforward: An Efficient Design of Adaptive Neural Network Control
,”
Neural Netw.
,
76
, pp.
122
134
. 10.1016/j.neunet.2015.12.009
15.
Liu
,
H.
, and
Zhang
,
T.
,
2014
, “
Adaptive Neural Network Finite-Time Control for Uncertain Robotic Manipulators
,”
J. Intell. Robot. Syst.
,
75
(
3–4
), pp.
363
377
. 10.1007/s10846-013-9888-5
16.
Lv
,
W.
,
Wang
,
F.
, and
Li
,
Y.
,
2018
, “
Adaptive Finite-Time Tracking Control for Nonlinear Systems With Unmodeled Dynamics Using Neural Networks
,”
Adv. Differ. Equ.
,
2018
(
1
), p.
159
. 10.1186/s13662-018-1615-x
17.
Pan
,
Y.
, and
Yu
,
H.
,
2017
, “
Biomimetic Hybrid Feedback Feedforward Neural-Network Learning Control
,”
IEEE Trans. Neural Netw. Learn. Syst.
,
28
(
6
), pp.
1481
1487
. 10.1109/TNNLS.2016.2527501
18.
He
,
W.
,
Dong
,
Y.
, and
Sun
,
C.
,
2016
, “
Adaptive Neural Impedance Control of a Robotic Manipulator With Input Saturation
,”
IEEE Trans. Syst. Man Cybern. Syst.
,
46
(
3
), pp.
334
344
. 10.1109/TSMC.2015.2429555
19.
Liu
,
J.
, and
Lu
,
Y.
,
2010
, “
Adaptive RBF Neural Network Control of Robot With Actuator Nonlinearities
,”
J. Control Theory Appl.
,
8
(
2
), pp.
249
256
. 10.1007/s11768-010-8038-x
20.
Park
,
G.-S.
, and
Hwang
,
D.-H.
,
2002
, “
Robust Controller Design for a Class of Nonlinear Robot Manipulators With Actuator Dynamics
,”
Int. J. Syst. Sci.
,
33
(
7
), pp.
557
565
. 10.1080/00207720210123751
21.
Mvogo Ahanda
,
J. J.-B.
,
Bosco Mbede
,
J.
,
Melingui
,
A.
,
Essimbi Zobo
,
B.
,
Lakhal
,
O.
, and
Merzouki
,
R.
,
2017
, “
Robust Control for Robot Manipulators: Support Vector Regression Based Command Filtered Adaptive Backstepping Approach
,”
IFAC-PapersOnLine
,
50
(
1
), pp.
8208
8213
. 10.1016/j.ifacol.2017.08.1385
22.
Niu
,
J.
,
Yang
,
Q.
,
Wang
,
X.
, and
Song
,
R.
,
2017
, “
Sliding Mode Tracking Control of a Wire-Driven Upper-Limb Rehabilitation Robot With Nonlinear Disturbance Observer
,”
Front. Neurol.
,
8
, p.
646
. 10.3389/fneur.2017.00646
23.
Neila
,
M. B. R.
, and
Tarak
,
D.
,
2011
, “
Adaptive Terminal Sliding Mode Control for Rigid Robotic Manipulators
,”
Int. J. Autom. Comput.
,
8
(
2
), pp.
215
220
. 10.1007/s11633-011-0576-2
24.
Wang
,
H.
,
Pan
,
Y.
,
Li
,
S.
, and
Yu
,
H.
,
2018
, “
Robust Sliding Mode Control for Robots Driven by Compliant Actuators
,”
IEEE Trans. Control Syst. Technol.
,
27
(
3
), pp.
1259
1266
. 10.1109/tcst.2018.2799587
25.
Tran
,
X.-T.
, and
Kang
,
H.-J.
,
2015
, “
Adaptive Hybrid High-Order Terminal Sliding Mode Control of MIMO Uncertain Nonlinear Systems and Its Application to Robot Manipulators
,”
Int. J. Precis. Eng. Manuf.
,
16
(
2
), pp.
255
266
. 10.1007/s12541-015-0034-0
26.
Khorashadizadeh
,
S.
, and
Sadeghijaleh
,
M.
,
2018
, “
Adaptive Fuzzy Tracking Control of Robot Manipulators Actuated by Permanent Magnet Synchronous Motors
,”
Comput. Electr. Eng.
,
72
, pp.
100
111
. 10.1016/j.compeleceng.2018.09.010
27.
Bai
,
K.
,
Gong
,
X.
,
Chen
,
S.
,
Wang
,
Y.
, and
Liu
,
Z.
,
2018
, “
Sliding Mode Nonlinear Disturbance Observer-Based Adaptive Back-Stepping Control of a Humanoid Robotic Dual Manipulator
,”
Robotica
,
36
(
11
), pp.
1728
1742
. 10.1017/S026357471800067X
28.
Pan
,
Y.
,
Li
,
X.
,
Wang
,
H.
, and
Yu
,
H.
,
2018
, “
Continuous Sliding Mode Control of Compliant Robot Arms: A Singularly Perturbed Approach
,”
Mechatronics
,
52
, pp.
127
134
. 10.1016/j.mechatronics.2018.04.005
29.
Lin
,
W.
,
Huo
,
X.
,
Jin
,
Z.
,
Wu
,
B.
, and
Liu
,
Z.
,
2018
, “
Sliding Mode Control of Manipulator Based on Nominal Model and Nonlinear Disturbance Observer
,”
IECON 2018 – 44th Annual Conference of the IEEE Industrial Electronics Society
,
Washington, DC
,
Dec. 31
.
30.
Feng
,
Z.
, and
Fei
,
J.
,
2018
, “
Super-Twisting Sliding Mode Control for Micro Gyroscope Based on RBF Neural Network
,”
IEEE Access
,
6
, pp.
64993
65001
. 10.1109/ACCESS.2018.2877398
You do not currently have access to this content.