Abstract

Stability control is critical to the exoskeleton robot controller design. Considering the complex structural characteristics of lower limb exoskeleton robots, the major challenge of the controller design is the accuracy and uncertainty of the dynamics model. To fill in this research gap, this study proposes successive approximation-based radial basis function (RBF) neural networks (NNs). The proposed model simplifies the lower limb exoskeleton robot as three degrees-of-freedom (3-DOF) model with the human hip joints for adduction/extension, bending/extension, and internal/external rotation. To minimize the gait tracking errors and stabilize the closed-loop system, a gait trajectory-based control and approximation model was proposed in this study. To verify the proposed method, a validation experiment was conducted for typical lower limb motions. The experiment results demonstrated the effectiveness of the proposed method.

References

References
1.
Yue
,
M.
,
Xinyu
,
W.
,
Jingang
,
Y.
,
Can
,
W.
, and
Chunjie
,
C.
,
2019
, “
A Review on Human-Exoskeleton Coordination Towards Lower Limb Robotic Exoskeleton Systems
,”
Int. J. Rob. Autom.
,
4
(
34
), pp.
431
451
.
2.
Zoss
,
A.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatronics
,
11
(
2
), pp.
128
138
. 10.1109/TMECH.2006.871087
3.
Yoshiyuki
,
S.
,
2007
, “
HAL: Hybrid Assistive Limb Based on Cybernics
,”
13th International Symposium on Robotics Research (ISSR)
,
Hiroshima, Japan
,
Nov. 26–29
,
Springer
, pp.
25
34
.
4.
Rifai
,
H.
,
Mohammed
,
S.
,
Djouani
,
K.
, and
Amirat
,
Y.
,
2017
, “
Toward Lower Limbs Functional Rehabilitation Through a Knee-Joint Exoskeleton
,”
IEEE Trans. Control Syst. Technol.
,
25
(
2
), pp.
712
719
. 10.1109/TCST.2016.2565385
5.
Strausser
,
K. A.
, and
Kazerooni
,
H.
,
2011
, “
The Development and Testing of a Human Machine Interface for a Mobile Medical Exoskeleton
,”
Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
,
IEEE
, pp.
4911
4916
.
6.
Mingdi
,
D.
,
Zhijun
,
L.
,
Yu
,
K.
,
C. L. Philip
,
C.
, and
Xiaoli
,
C.
,
2020
, “
A Learning-Based Hierarchical Control Scheme for an Exoskeleton Robot in Human-Robot Cooperative Manipulation
,”
IEEE Trans. Cybern.
,
50
(
1
), pp.
112
125
.
7.
Henseler
,
J.
, and
Chin
,
W. W.
,
2010
, “
A Comparison of Approaches for the Analysis of Interaction Effects Between Latent Variables Using Partial Least Squares Path Modeling
,”
Struct. Equ. Model. Multidiscip. J.
,
17
(
1
), pp.
82
109
. 10.1080/10705510903439003
8.
Bertram
,
J. E. A.
, and
Ruina
,
A.
,
2001
, “
Multiple Walking Speed–Frequency Relations Are Predicted by Constrained Optimization
,”
J. Theor. Biol.
,
209
(
4
), pp.
445
453
. 10.1006/jtbi.2001.2279
9.
Ackermann
,
M.
, and
van den Bogert
,
A. J.
,
2010
, “
Optimality Principles for Model-Based Prediction of Human Gait
,”
J. Biomech
,
43
(
6
), pp.
1055
1060
. 10.1016/j.jbiomech.2009.12.012
10.
Anderson
,
F. C.
, and
Pandy
,
M. G.
,
2001
, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
,
123
(
5
), p.
381
390
. 10.1115/1.1392310
11.
Bessonnet
,
G.
,
Chessé
,
S.
, and
Sardain
,
P.
,
2004
, “
Optimal Gait Synthesis of a Seven-Link Planar Biped
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1059
1073
. 10.1177/0278364904047393
12.
Neptune
,
R. R.
,
Clark
,
D. J.
, and
Kautz
,
S. A.
,
2009
, “
Modular Control of Human Walking: A Simulation Study
,”
J. Biomech.
,
42
(
9
), pp.
1282
1287
. 10.1016/j.jbiomech.2009.03.009
13.
Bessonnet
,
G.
,
Marot
,
J.
,
Seguin
,
P.
, and
Sardain
,
P.
,
2010
, “
Parametric-Based Dynamic Synthesis of 3D-Gait
,”
Robotica
,
28
(
4
), pp.
563
581
. 10.1017/S0263574709990257
14.
Chevallereau
,
C.
, and
Aoustin
,
Y.
,
2001
, “
Optimal Reference Trajectories for Walking and Running of a Biped Robot
,”
Robotica
,
19
(
5
), pp.
557
569
. 10.1017/S0263574701003307
15.
Ren
,
L.
,
Jones
,
R. K.
, and
Howard
,
D.
,
2007
, “
Predictive Modelling of Human Walking Over a Complete Gait Cycle
,”
J. Biomech.
,
40
(
7
), pp.
1567
1574
. 10.1016/j.jbiomech.2006.07.017
16.
Xiang
,
Y.
,
Arora
,
J. S.
, and
Abdel-Malek
,
K.
,
2011
, “
Optimization-Based Prediction of Asymmetric Human Gait
,”
J. Biomech.
,
44
(
4
), pp.
683
693
. 10.1016/j.jbiomech.2010.10.045
17.
Li
,
G.
,
Pierce
,
J. E.
, and
Herndon
,
J. H.
,
2006
, “
A Global Optimization Method for Prediction of Muscle Forces of Human Musculoskeletal System
,”
J. Biomech.
,
39
(
3
), pp.
522
529
. 10.1016/j.jbiomech.2004.11.027
18.
Butepage
,
J.
,
Black
,
M. J.
,
Kragic
,
D.
, and
Kjellstrom
,
H.
,
2017
, “
Deep Representation Learning for Human Motion Prediction and Classification
,”
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
,
IEEE
, pp.
1591
1599
.
19.
Yun
,
Y.
,
Kim
,
H.-C.
,
Shin
,
S. Y.
,
Lee
,
J.
,
Deshpande
,
A. D.
, and
Kim
,
C.
,
2014
, “
Statistical Method for Prediction of Gait Kinematics With Gaussian Process Regression
,”
J. Biomech.
,
47
(
1
), pp.
186
192
. 10.1016/j.jbiomech.2013.09.032
20.
Bataineh
,
M.
,
Marler
,
T.
,
Abdel-Malek
,
K.
, and
Arora
,
J.
,
2016
, “
Neural Network for Dynamic Human Motion Prediction
,”
Expert Syst. Appl.
,
48
, pp.
26
34
. 10.1016/j.eswa.2015.11.020
21.
Du
,
X.
,
Vasudevan
,
R.
, and
Johnson-Roberson
,
M.
,
2019
, “
Bio-LSTM: A Biomechanically Inspired Recurrent Neural Network for 3-D Pedestrian Pose and Gait Prediction
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
1501
1508
. 10.1109/LRA.2019.2895266
22.
Martinez
,
J.
,
Black
,
M. J.
, and
Romero
,
J.
,
2017
, “
On Human Motion Prediction Using Recurrent Neural Networks
,”
Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
,
Honolulu, HI
,
July 21–26
,
IEEE
, pp.
4674
4683
.
23.
Prasertsakul
,
T.
,
Poonsiri
,
J.
, and
Charoensuk
,
W.
,
2012
, “
Prediction Gait During Ascending Stair by Using Artificial Neural Networks
,”
Proceedings of the 5th 2012 Biomedical Engineering International Conference
,
Ubon Ratchathani, Thailand
,
Dec. 5–7
,
IEEE
, pp.
1
5
.
24.
Luu
,
T. P.
,
Low
,
K. H.
,
Qu
,
X.
,
Lim
,
H. B.
, and
Hoon
,
K. H.
,
2014
, “
An Individual-Specific Gait Pattern Prediction Model Based on Generalized Regression Neural Networks
,”
Gait Posture
,
39
(
1
), pp.
443
448
. 10.1016/j.gaitpost.2013.08.028
25.
Vakulenko
,
S.
,
Radulescu
,
O.
,
Morozov
,
I.
, and
Weber
,
A.
,
2017
, “
Centralized Networks to Generate Human Body Motions
,”
Sensors
,
17
(
12
), p.
2907
. 10.3390/s17122907
26.
Goulermas
,
J. Y.
,
Howard
,
D.
,
Nester
,
C. J.
,
Jones
,
R. K.
, and
Ren
,
L.
,
2005
, “
Regression Techniques for the Prediction of Lower Limb Kinematics
,”
ASME J. Biomech. Eng.
,
127
(
6
), p.
1020
1024
. 10.1115/1.2049328
27.
Rossomando
,
F. G.
,
Soria
,
C.
, and
Carelli
,
R.
,
2011
, “
Autonomous Mobile Robots Navigation Using RBF Neural Compensator
,”
Control Eng. Pract.
,
19
(
3
), pp.
215
222
. 10.1016/j.conengprac.2010.11.011
28.
Schilling
,
R. J.
,
Carroll
,
J. J.
, and
Al-Ajlouni
,
A. F.
,
2001
, “
Approximation of Nonlinear Systems With Radial Basis Function Neural Networks
,”
IEEE Trans. Neural Networks
,
12
(
1
), pp.
1
15
. 10.1109/72.896792
29.
Memarian
,
H.
, and
Balasundram
,
S. K.
,
2012
, “
Comparison Between Multi-Layer Perceptron and Radial Basis Function Networks for Sediment Load Estimation in a Tropical Watershed
,”
J. Water Resour. Prot.
,
4
(
10
), pp.
870
876
. 10.4236/jwarp.2012.410102
30.
Oh
,
S.-K.
,
Kim
,
W.-D.
,
Pedrycz
,
W.
, and
Park
,
B.-J.
,
2011
, “
Polynomial-Based Radial Basis Function Neural Networks (P-RBF NNs) Realized With the Aid of Particle Swarm Optimization
,”
Fuzzy Sets Syst.
,
163
(
1
), pp.
54
77
. 10.1016/j.fss.2010.08.007
You do not currently have access to this content.